Extending Brickell–Davenport theorem to non-perfect secret sharing schemes

One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 74; číslo 2; s. 495 - 510
Hlavní autori: Farràs, Oriol, Padró, Carles
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.02.2015
Predmet:
ISSN:0925-1022, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes are also considered. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated with matroids. Some optimality properties of such schemes are discussed.
AbstractList One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes are also considered. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated with matroids. Some optimality properties of such schemes are discussed.
Author Farràs, Oriol
Padró, Carles
Author_xml – sequence: 1
  givenname: Oriol
  surname: Farràs
  fullname: Farràs, Oriol
  email: oriol.farras@urv.cat
  organization: Universitat Rovira i Virgili
– sequence: 2
  givenname: Carles
  surname: Padró
  fullname: Padró, Carles
  organization: Nanyang Technological University
BookMark eNp9kE1OwzAQRi1UJNrCAdjlAoaxEzvOEkr5kSKxgbXlOBOakiaRbRDsuAM35CQ4KisWXX2beTPzvgWZ9UOPhJwzuGAA-aVnIHlKgaW0UEJRdUTmTOQpzYWSMzKHggvKgPMTsvB-CxAngc9Juf4I2Ndt_5Jcu9a-Ytf9fH3fmHfsx8GFJGxwcLhLwpDEi3RE16ANiUfrMMbGuAn1doM79KfkuDGdx7O_XJLn2_XT6p6Wj3cPq6uS2gwg0EJaaXnGTR1flcArw3mRFsjqpq6NkFbJopJSNKigtqJKEbO6yZUUvGqyKLUk-X6vdYP3Dhtt22BCO_TBmbbTDPRUit6XoqOqnkrRKpLsHzm6dmfc50GG7xk_TrLo9HZ4c30UPAD9Apm9eGU
CitedBy_id crossref_primary_10_1007_s00453_016_0217_9
crossref_primary_10_1016_j_ins_2022_01_053
crossref_primary_10_1177_15501329221088740
Cites_doi 10.1007/978-3-642-20901-7_2
10.1002/0471200611
10.1007/BF00196772
10.1016/S0019-9958(78)91063-X
10.1023/A:1008244215660
10.1007/BFb0028171
10.1007/s00145-011-9101-6
10.1007/s001459900029
10.1137/0112059
10.1016/S0012-365X(99)00004-7
10.1145/359168.359176
10.1007/BF00125203
10.1007/3-540-39568-7_20
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
DOI 10.1007/s10623-013-9858-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1573-7586
EndPage 510
ExternalDocumentID 10_1007_s10623_013_9858_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c400t-96c6c242ad985602ba22939e1dfdda56c869b665fe80dc5b3ee4df78652bf4573
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348340600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-1022
IngestDate Tue Nov 18 21:31:31 EST 2025
Sat Nov 29 02:35:50 EST 2025
Fri Feb 21 02:34:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Non-perfect secret sharing scheme
94A62
05B35
Secret sharing
Matroid
Polymatroid
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-96c6c242ad985602ba22939e1dfdda56c869b665fe80dc5b3ee4df78652bf4573
OpenAccessLink https://recercat.cat/handle/2072/261720
PageCount 16
ParticipantIDs crossref_citationtrail_10_1007_s10623_013_9858_8
crossref_primary_10_1007_s10623_013_9858_8
springer_journals_10_1007_s10623_013_9858_8
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle An International Journal
PublicationTitle Designs, codes, and cryptography
PublicationTitleAbbrev Des. Codes Cryptogr
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th joint Swedish–Russian workshop on information theory, Molle, Sweden, August 1993, pp. 269–279 (1993).
SeymourP.D.On secret-sharing matroidsJ. Comb. Theory B1992566973
Cover T.M., Thomas J.A.: Elements of information theory. Wiley, New York (1991).
Ogata W., Kurosawa K., Tsujii S.: Nonperfect secret sharing schemes. In: Advances in Cryptology, Auscrypt 92. Lecture Notes in Computer Science, vol. 718, pp. 56–66 (1993).
BrickellE.F.Some ideal secret sharing schemesJ. Comb. Math. Comb. Comput.19899105113
MatúšF.Two constructions on limits of entropy functionsIEEE Trans. Inf. Theory200753320330
StinsonD.R.An explication of secret sharing schemesDes. Codes Cryptogr.19922357390
CsirmazL.The size of a share must be largeJ. Cryptol.199710223231
Martí-FarréJ.PadróC.On secret sharing schemes, matroids and polymatroidsJ. Math. Cryptol.2010495120
SeymourP.D.A forbidden minor characterization of matroid portsQ. J. Math. Oxf. Ser.197627407413
SimonisJ.AshikhminA.Almost affine codesDes. Codes Cryptogr.199814179197
Blakley G.R., Meadows C.: Security of ramp schemes. In: Advances in Cryptology, Crypto 84. Lecture Notes in Computer Science, vol. 196, pp. 242–268 (1985).
BeimelA.OrlovI.Secret sharing and non-Shannon information inequalitiesIEEE Trans. Inf. Theory20115756345649
Martin K.M.: Discrete structures in the theory of secret sharing. Ph.D. Thesis, University of London (1991).
Farràs O., Padró C., Xing C., Yang A.: Natural generalizations of threshold secret sharing. In: Advances in Cryptology, Asiacrypt 2011. Lecture Notes in Computer Science, vol. 7073, pp. 610–627 (2011).
ShamirA.How to share a secretCommun. ACM197922612613
FarràsO.PadróC.Ideal hierarchical secret sharing schemesIEEE Trans. Inf. Theory20125832733286
Welsh D.J.A.: Matroid theory. Academic Press, London (1976).
BrickellE.F.DavenportD.M.On the classification of ideal secret sharing schemesJ. Cryptol.19914123134
Oxley J.G.: Matroid theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992).
FarràsO.Martí-FarréJ.PadróC.Ideal multipartite secret sharing schemesJ. Cryptol.201225434463
MatúšF.Matroid representations by partitionsDiscret. Math.1999203169194
Paillier P.: On ideal non-perfect secret sharing schemes. In: Security protocols, 5th international workshop. Lecture Notes in Computer Science, vol. 1361, pp. 207–216 (1998).
Kurosawa K., Okada K., Sakano K., Ogata W., Tsujii S.: Nonperfect secret sharing schemes and matroids. In: Advances in Cryptology, EUROCRYPT 1993. Lecture Notes in Computer Science, vol. 765, pp. 126–141 (1993).
FujishigeS.Polymatroidal dependence structure of a set of random variablesInf. Control1978395572
KarninE.D.GreeneJ.W.HellmanM.E.On secret sharing systemsIEEE Trans. Inf. Theory1983293541
PadróC.VázquezL.YangA.Finding lower bounds on the complexity of secret sharing schemes by linear programmingDiscret. Appl. Math.201316110721084
BeimelA.WeinrebE.Separating the power of monotone span programs over different fieldsSIAM J. Comput.20053411961215
LehmanA.A solution of the Shannon switching gameJ. Soc. Ind. Appl. Math.196412687725
Beimel A.: Secret-sharing schemes: a survey. In: Coding and Cryptology. Third International Workshop, IWCC. Lecture Notes in Computer Science, vol. 6639, pp. 11–46 (2011).
Schrijver A.: Combinatorial optimization. Polyhedra and efficiency. Springer, Berlin (2003).
LehmanA.Matroids and portsNotices Am. Math. Soc.197612356360
Beimel A., Livne N., Padró C.: Matroids can be far from ideal secret sharing. In: Fifth theory of cryptography conference, TCC 2008. Lecture Notes in Computer Science, vol. 4948, pp. 194–212 (2008).
Cramer R., Daza V., Gracia I., Jiménez Urroz J., Leander G., Martí-Farré J., Padró C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. IEEE Trans. Inf. Theory 54, 2644–2657 (2008).
Dougherty R., Freiling C., Zeger K.: Linear rank inequalities on five or more variables. SIAM J. Discret. Math. (2009). arXiv:0910.0284v3.
9858_CR28
9858_CR29
9858_CR26
9858_CR27
9858_CR2
9858_CR3
9858_CR1
9858_CR6
9858_CR20
9858_CR7
9858_CR21
9858_CR4
9858_CR5
9858_CR24
9858_CR25
9858_CR8
9858_CR22
9858_CR9
9858_CR23
9858_CR17
9858_CR18
9858_CR15
9858_CR16
9858_CR19
9858_CR31
9858_CR10
9858_CR32
9858_CR30
9858_CR13
9858_CR35
9858_CR14
9858_CR11
9858_CR33
9858_CR12
9858_CR34
References_xml – reference: SeymourP.D.A forbidden minor characterization of matroid portsQ. J. Math. Oxf. Ser.197627407413
– reference: BeimelA.WeinrebE.Separating the power of monotone span programs over different fieldsSIAM J. Comput.20053411961215
– reference: Martin K.M.: Discrete structures in the theory of secret sharing. Ph.D. Thesis, University of London (1991).
– reference: FarràsO.Martí-FarréJ.PadróC.Ideal multipartite secret sharing schemesJ. Cryptol.201225434463
– reference: Cramer R., Daza V., Gracia I., Jiménez Urroz J., Leander G., Martí-Farré J., Padró C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. IEEE Trans. Inf. Theory 54, 2644–2657 (2008).
– reference: Oxley J.G.: Matroid theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992).
– reference: Beimel A.: Secret-sharing schemes: a survey. In: Coding and Cryptology. Third International Workshop, IWCC. Lecture Notes in Computer Science, vol. 6639, pp. 11–46 (2011).
– reference: SimonisJ.AshikhminA.Almost affine codesDes. Codes Cryptogr.199814179197
– reference: LehmanA.A solution of the Shannon switching gameJ. Soc. Ind. Appl. Math.196412687725
– reference: PadróC.VázquezL.YangA.Finding lower bounds on the complexity of secret sharing schemes by linear programmingDiscret. Appl. Math.201316110721084
– reference: Cover T.M., Thomas J.A.: Elements of information theory. Wiley, New York (1991).
– reference: MatúšF.Two constructions on limits of entropy functionsIEEE Trans. Inf. Theory200753320330
– reference: StinsonD.R.An explication of secret sharing schemesDes. Codes Cryptogr.19922357390
– reference: SeymourP.D.On secret-sharing matroidsJ. Comb. Theory B1992566973
– reference: FarràsO.PadróC.Ideal hierarchical secret sharing schemesIEEE Trans. Inf. Theory20125832733286
– reference: BrickellE.F.Some ideal secret sharing schemesJ. Comb. Math. Comb. Comput.19899105113
– reference: Paillier P.: On ideal non-perfect secret sharing schemes. In: Security protocols, 5th international workshop. Lecture Notes in Computer Science, vol. 1361, pp. 207–216 (1998).
– reference: Welsh D.J.A.: Matroid theory. Academic Press, London (1976).
– reference: Beimel A., Livne N., Padró C.: Matroids can be far from ideal secret sharing. In: Fifth theory of cryptography conference, TCC 2008. Lecture Notes in Computer Science, vol. 4948, pp. 194–212 (2008).
– reference: Farràs O., Padró C., Xing C., Yang A.: Natural generalizations of threshold secret sharing. In: Advances in Cryptology, Asiacrypt 2011. Lecture Notes in Computer Science, vol. 7073, pp. 610–627 (2011).
– reference: LehmanA.Matroids and portsNotices Am. Math. Soc.197612356360
– reference: ShamirA.How to share a secretCommun. ACM197922612613
– reference: KarninE.D.GreeneJ.W.HellmanM.E.On secret sharing systemsIEEE Trans. Inf. Theory1983293541
– reference: Dougherty R., Freiling C., Zeger K.: Linear rank inequalities on five or more variables. SIAM J. Discret. Math. (2009). arXiv:0910.0284v3.
– reference: FujishigeS.Polymatroidal dependence structure of a set of random variablesInf. Control1978395572
– reference: BeimelA.OrlovI.Secret sharing and non-Shannon information inequalitiesIEEE Trans. Inf. Theory20115756345649
– reference: Ogata W., Kurosawa K., Tsujii S.: Nonperfect secret sharing schemes. In: Advances in Cryptology, Auscrypt 92. Lecture Notes in Computer Science, vol. 718, pp. 56–66 (1993).
– reference: Schrijver A.: Combinatorial optimization. Polyhedra and efficiency. Springer, Berlin (2003).
– reference: Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th joint Swedish–Russian workshop on information theory, Molle, Sweden, August 1993, pp. 269–279 (1993).
– reference: Martí-FarréJ.PadróC.On secret sharing schemes, matroids and polymatroidsJ. Math. Cryptol.2010495120
– reference: Blakley G.R., Meadows C.: Security of ramp schemes. In: Advances in Cryptology, Crypto 84. Lecture Notes in Computer Science, vol. 196, pp. 242–268 (1985).
– reference: Kurosawa K., Okada K., Sakano K., Ogata W., Tsujii S.: Nonperfect secret sharing schemes and matroids. In: Advances in Cryptology, EUROCRYPT 1993. Lecture Notes in Computer Science, vol. 765, pp. 126–141 (1993).
– reference: BrickellE.F.DavenportD.M.On the classification of ideal secret sharing schemesJ. Cryptol.19914123134
– reference: CsirmazL.The size of a share must be largeJ. Cryptol.199710223231
– reference: MatúšF.Matroid representations by partitionsDiscret. Math.1999203169194
– ident: 9858_CR1
  doi: 10.1007/978-3-642-20901-7_2
– ident: 9858_CR30
– ident: 9858_CR11
– ident: 9858_CR13
– ident: 9858_CR8
  doi: 10.1002/0471200611
– ident: 9858_CR7
  doi: 10.1007/BF00196772
– ident: 9858_CR4
– ident: 9858_CR17
– ident: 9858_CR19
– ident: 9858_CR2
– ident: 9858_CR6
– ident: 9858_CR21
– ident: 9858_CR15
  doi: 10.1016/S0019-9958(78)91063-X
– ident: 9858_CR33
  doi: 10.1023/A:1008244215660
– ident: 9858_CR25
– ident: 9858_CR27
– ident: 9858_CR28
  doi: 10.1007/BFb0028171
– ident: 9858_CR12
  doi: 10.1007/s00145-011-9101-6
– ident: 9858_CR31
– ident: 9858_CR29
– ident: 9858_CR14
– ident: 9858_CR10
  doi: 10.1007/s001459900029
– ident: 9858_CR35
– ident: 9858_CR18
  doi: 10.1137/0112059
– ident: 9858_CR23
  doi: 10.1016/S0012-365X(99)00004-7
– ident: 9858_CR16
– ident: 9858_CR22
– ident: 9858_CR3
– ident: 9858_CR32
  doi: 10.1145/359168.359176
– ident: 9858_CR9
– ident: 9858_CR20
– ident: 9858_CR24
– ident: 9858_CR34
  doi: 10.1007/BF00125203
– ident: 9858_CR5
  doi: 10.1007/3-540-39568-7_20
– ident: 9858_CR26
SSID ssj0001302
Score 2.044141
Snippet One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 495
SubjectTerms Circuits
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
Title Extending Brickell–Davenport theorem to non-perfect secret sharing schemes
URI https://link.springer.com/article/10.1007/s10623-013-9858-8
Volume 74
WOSCitedRecordID wos000348340600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001302
  issn: 0925-1022
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFivJQDJ1CkPpY0OQLaxAEmxEu7VXlVIO2ltXDmP_AP-SUkfcEkQIJTVdVxIzeOndr-DHDEuKBRqCi21kq4MKOxOkcSHPgh8TSXnuAqbzYR9ftsMODXZR13WmW7VyHJfKf-UuxmTTV23Qg4IwyzRViy1o45bby5fai3XxeJywH2AgexGQRVKPM7FvPGaD4SmhuYXvNfU1uHtdKfRKfFAtiABTNuQbPq1YBK1W3B6hfgQXt3VaO1pptw2c3_hNsn6Myh5Jvh8P31rW40j4pixxHKJmg8GeOpmbkcEJQ6j9NeHoVjiuwx2YxMugX3ve7d-QUuuyxgZfU3w5wqqqyhFtrOnXqBFIF1AbjxdaK1IFQxyiWlJDHM04rI0JiOTiJGSSCTDonCbWjYl5sdQMoLtRBCci6ZO7exjguSqsi3PBJf8jZ4lbhjVUKQu04Yw_gTPNlJMrZjYyfJmLXhuB4yLfA3fiM-qb5PXKpi-jP17p-o92DF-kqkSNjeh0Y2ezYHsKxesqd0dpgvwQ8yudXM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIAEHBgPEeObACVSpjyVNjoA2gdgmBAPtViVpKpD20lo48x_4h_wSkr7YJECCU1XVcSM3jp3a_gxwQhknvieJpa0VN2FGpXUOR5breNgOmbA5k2mzCb_bpf0-u83ruOMi270ISaY79UyxmzbVlulGwCimFl2EpYY2WCaP7-7-sdx-TSQuBdhzDcSm6xahzO9YzBuj-UhoamBa1X9NbQPWc38SnWcLYBMW1KgG1aJXA8pVtwZrM8CD-q5TorXGW9Bupn_C9RN0YVDy1WDw8fZeNppHWbHjECVjNBqPrImamhwQFBuPU1-euGGK9DFZDVW8DQ-tZu_yysq7LFhS629iMSKJ1Iaah3ruxHYFd7ULwJQTRmHIMZGUMEEIjhS1Q4mFp1QjjHxKsCuiBva9Hajol6tdQNL2Qs65YExQc26jDRMklb6jeUSOYHWwC3EHMocgN50wBsEXeLKRZKDHBkaSAa3DaTlkkuFv_EZ8VnyfIFfF-GfqvT9RH8PKVa_TDtrX3Zt9WNV-E86Stw-gkkxf1CEsy9fkOZ4epcvxE0G-2LA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQQgOFAqIsvrACRSRJrFjH1lagShVJRb1Fjm2I5C6qQmc-Qf-kC_BzkYrARLiFEUZTyzHkxl7PO8BHFHGie8KYmlvxU2aUWmbw5HlNFxsSxbanImUbMLvdGivx7o5z2lcnHYvUpJZTYNBaRomp2MZnU4Vvmm3bRlmAkYxteg8LHiGM8gs1-8ey1-xycqlYHuOgdt0nCKt-Z2KWcc0mxVNnU2r-u9ursFqHmeis2xirMOcGtagWnA4oNyka7AyBUio725LFNd4A9rNdIdcP0HnBj1f9fsfb-8lAT3KiiAHKBmh4WhojdXEnA1BsYlE9eWJG6VIL5_VQMWb8NBq3l9cWTn7giW0XScWI4II7cC51H0nthNyR4cGTDVkJCXHRFDCQkJwpKgtBQ5dpTwZ-ZRgJ4w87LtbUNEvV9uAhO1KznnIWEjNeo56Jnkq_IbWETVCVge7GPpA5NDkhiGjH3yBKpuRDHTbwIxkQOtwXDYZZ7gcvwmfFN8qyE00_ll650_Sh7DUvWwF7evOzS4s63AKZ2e696CSTF7UPiyK1-Q5nhykM_MTy6rhlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+Brickell%E2%80%93Davenport+theorem+to+non-perfect+secret+sharing+schemes&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Farr%C3%A0s%2C+Oriol&rft.au=Padr%C3%B3%2C+Carles&rft.date=2015-02-01&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=74&rft.issue=2&rft.spage=495&rft.epage=510&rft_id=info:doi/10.1007%2Fs10623-013-9858-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10623_013_9858_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon