Extending Brickell–Davenport theorem to non-perfect secret sharing schemes

One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 74; číslo 2; s. 495 - 510
Hlavní autoři: Farràs, Oriol, Padró, Carles
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.02.2015
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:One important result in secret sharing is the Brickell–Davenport theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. We present a generalization of the Brickell–Davenport theorem to the general case, in which non-perfect schemes are also considered. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated with matroids. Some optimality properties of such schemes are discussed.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-013-9858-8