Through the Window: Exploitation and Countermeasures of the ESP32 Register Window Overflow

With the increasing popularity of IoT (Internet-of-Things) devices, their security becomes an increasingly important issue. Buffer overflow vulnerabilities have been known for decades, but are still relevant, especially for embedded devices where certain security measures cannot be implemented due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet Jg. 15; H. 6; S. 217
Hauptverfasser: Lehniger, Kai, Langendörfer, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2023
Schlagworte:
ISSN:1999-5903, 1999-5903
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing popularity of IoT (Internet-of-Things) devices, their security becomes an increasingly important issue. Buffer overflow vulnerabilities have been known for decades, but are still relevant, especially for embedded devices where certain security measures cannot be implemented due to hardware restrictions or simply due to their impact on performance. Therefore, many buffer overflow detection mechanisms check for overflows only before critical data are used. All data that an attacker could use for his own purposes can be considered critical. It is, therefore, essential that all critical data are checked between writing a buffer and its usage. This paper presents a vulnerability of the ESP32 microcontroller, used in millions of IoT devices, that is based on a pointer that is not protected by classic buffer overflow detection mechanisms such as Stack Canaries or Shadow Stacks. This paper discusses the implications of vulnerability and presents mitigation techniques, including a patch, that fixes the vulnerability. The overhead of the patch is evaluated using simulation as well as an ESP32-WROVER-E development board. We showed that, in the simulation with 32 general-purpose registers, the overhead for the CoreMark benchmark ranges between 0.1% and 0.4%. On the ESP32, which uses an Xtensa LX6 core with 64 general-purpose registers, the overhead went down to below 0.01%. A worst-case scenario, modeled by a synthetic benchmark, showed overheads up to 9.68%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-5903
1999-5903
DOI:10.3390/fi15060217