Multi-sensor fusion for robust target tracking in the simultaneous presence of set-membership and stochastic Gaussian uncertainties

This study proposes a novel data fusion algorithm in sensor networks with simultaneous presence of set-membership and stochastic Gaussian measurement uncertainties. The proposed method is grounded in the marriage of ellipsoidal calculus theory and data compression algorithm. The point-valued measure...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET radar, sonar & navigation Ročník 11; číslo 4; s. 621 - 628
Hlavní autoři: Lu, Kelin, Zhou, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.04.2017
Témata:
ISSN:1751-8784, 1751-8792
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a novel data fusion algorithm in sensor networks with simultaneous presence of set-membership and stochastic Gaussian measurement uncertainties. The proposed method is grounded in the marriage of ellipsoidal calculus theory and data compression algorithm. The point-valued measurement and the set-valued measurement are compressed into a uniform framework during the estimation. An optimal Kalman gain is obtained that minimises the upper bound of the mean square error of the estimation set. The proposed algorithm is applied to the target tracking problem and the estimation results show that the proposed algorithm improves the tracking performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8784
1751-8792
DOI:10.1049/iet-rsn.2016.0198