Efficient and accurate approximate Bayesian inference with an application to insurance data

Efficient and accurate Bayesian Markov chain Monte Carlo methodology is proposed for the estimation of event rates under an overdispersed Poisson distribution. An approximate Gibbs sampling method and an exact independence-type Metropolis–Hastings algorithm are derived, based on a log-normal/gamma m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics & data analysis Ročník 52; číslo 5; s. 2604 - 2622
Hlavní autoři: Streftaris, George, Worton, Bruce J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 20.01.2008
Elsevier Science
Elsevier
Edice:Computational Statistics & Data Analysis
Témata:
ISSN:0167-9473, 1872-7352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Efficient and accurate Bayesian Markov chain Monte Carlo methodology is proposed for the estimation of event rates under an overdispersed Poisson distribution. An approximate Gibbs sampling method and an exact independence-type Metropolis–Hastings algorithm are derived, based on a log-normal/gamma mixture density that closely approximates the conditional distribution of the Poisson parameters. This involves a moment matching process, with the exact conditional moments obtained employing an entropy distance minimisation (Kullback–Liebler divergence) criterion. A simulation study is conducted and demonstrates good Bayes risk properties and robust performance for the proposed estimators, as compared with other estimating approaches under various loss functions. Actuarial data on insurance claims are used to illustrate the methodology. The approximate analysis displays superior Markov chain Monte Carlo mixing efficiency, whilst providing almost identical inferences to those obtained with exact methods.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2007.09.006