Data mining in lithium-ion battery cell production

Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources Vol. 413; pp. 360 - 366
Main Authors: Schnell, Joscha, Nentwich, Corbinian, Endres, Florian, Kollenda, Anna, Distel, Fabian, Knoche, Thomas, Reinhart, Gunther
Format: Journal Article
Language:English
Published: Elsevier B.V 15.02.2019
Subjects:
ISSN:0378-7753, 1873-2755
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well as the prediction of the product quality before the cumbersome and costly formation and aging procedure. Several Data mining methods, such as Generalized Linear Model (GLM), Artificial Neural Networks (ANN), Support Vector Regression (SVR), Decision Trees (DT), Random Forest (RF), and Gradient Boosted Trees (GBT) are compared and evaluated. Best results are yielded by an application of GLM, RF, and GBT for prediction of battery cell capacity before the expensive formation process. Key quality drivers identified are the electrode fabrication processes, as well as the electrolyte filling process during cell assembly. This is, to our knowledge, the first time data from a real battery production line has been systematically processed and analyzed along the whole process chain. The results of this paper can assist to manufacture better batteries and to reduce costs of lithium-ion cells by providing a systematic procedure for data acquisition and by lowering scrap rates during production. [Display omitted] •Data mining approaches were applied to a real battery production line.•A systematic procedure for data acquisition, processing, and analysis is given.•Electrode fabrication and electrolyte filling are identified as key quality drivers.•The results can help to decrease battery production cost by reducing scrap rates.
AbstractList Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well as the prediction of the product quality before the cumbersome and costly formation and aging procedure. Several Data mining methods, such as Generalized Linear Model (GLM), Artificial Neural Networks (ANN), Support Vector Regression (SVR), Decision Trees (DT), Random Forest (RF), and Gradient Boosted Trees (GBT) are compared and evaluated. Best results are yielded by an application of GLM, RF, and GBT for prediction of battery cell capacity before the expensive formation process. Key quality drivers identified are the electrode fabrication processes, as well as the electrolyte filling process during cell assembly. This is, to our knowledge, the first time data from a real battery production line has been systematically processed and analyzed along the whole process chain. The results of this paper can assist to manufacture better batteries and to reduce costs of lithium-ion cells by providing a systematic procedure for data acquisition and by lowering scrap rates during production. [Display omitted] •Data mining approaches were applied to a real battery production line.•A systematic procedure for data acquisition, processing, and analysis is given.•Electrode fabrication and electrolyte filling are identified as key quality drivers.•The results can help to decrease battery production cost by reducing scrap rates.
Author Schnell, Joscha
Distel, Fabian
Nentwich, Corbinian
Reinhart, Gunther
Endres, Florian
Knoche, Thomas
Kollenda, Anna
Author_xml – sequence: 1
  givenname: Joscha
  surname: Schnell
  fullname: Schnell, Joscha
  email: Joscha.Schnell@iwb.mw.tum.de
– sequence: 2
  givenname: Corbinian
  surname: Nentwich
  fullname: Nentwich, Corbinian
– sequence: 3
  givenname: Florian
  surname: Endres
  fullname: Endres, Florian
– sequence: 4
  givenname: Anna
  surname: Kollenda
  fullname: Kollenda, Anna
– sequence: 5
  givenname: Fabian
  surname: Distel
  fullname: Distel, Fabian
– sequence: 6
  givenname: Thomas
  surname: Knoche
  fullname: Knoche, Thomas
– sequence: 7
  givenname: Gunther
  surname: Reinhart
  fullname: Reinhart, Gunther
BookMark eNqFj9FKwzAYhYNMcJu-gvQFWv8kbdOBF8p0Kgy80evwN0k1pUtGkil7ezumN97s6sCB73C-GZk47wwh1xQKCrS-6Yt-67-j34WCAW0Kygqo2RmZ0kbwnImqmpApcNHkQlT8gsxi7AGAUgFTwh4wYbaxzrqPzLpssOnT7ja59S5rMSUT9pkyw5Btg9c7lcb-kpx3OERz9Ztz8r56fFs-5-vXp5fl_TpXfLFIOYpWdHWpwFR1w6HTVauF6TgiNajLrtJAS1rqqmGcNqhZx1vgC9SogTMs-ZzcHndV8DEG00llEx4epIB2kBTkwV_28s9fHvwlZXL0H_H6H74NdoNhfxq8O4JmlPuyJsiorHHKaBuMSlJ7e2riBycZfR0
CitedBy_id crossref_primary_10_1016_j_procir_2021_01_122
crossref_primary_10_1016_j_procs_2021_01_199
crossref_primary_10_1002_sus2_70030
crossref_primary_10_1016_j_procir_2023_08_031
crossref_primary_10_1080_09537287_2024_2414334
crossref_primary_10_1016_j_procir_2021_11_170
crossref_primary_10_3233_JIFS_189408
crossref_primary_10_1016_j_cie_2021_107227
crossref_primary_10_1021_acsaem_5c01298
crossref_primary_10_1016_j_aei_2020_101101
crossref_primary_10_1016_j_procir_2021_11_178
crossref_primary_10_1016_j_est_2019_101170
crossref_primary_10_1016_j_procir_2021_11_177
crossref_primary_10_1002_batt_202400539
crossref_primary_10_3390_batteries9020089
crossref_primary_10_1016_j_est_2020_101828
crossref_primary_10_1002_ente_201901237
crossref_primary_10_1002_ente_202200911
crossref_primary_10_1007_s11740_024_01281_3
crossref_primary_10_1002_ente_201900026
crossref_primary_10_1002_batt_202500356
crossref_primary_10_1016_j_fub_2025_100090
crossref_primary_10_1016_j_procir_2024_08_267
crossref_primary_10_1016_j_est_2023_108803
crossref_primary_10_1109_TMECH_2020_3049046
crossref_primary_10_3390_pr8091068
crossref_primary_10_1007_s11431_025_3005_9
crossref_primary_10_1177_01423312211057981
crossref_primary_10_1002_batt_201900135
crossref_primary_10_1002_batt_202300046
crossref_primary_10_1016_j_procir_2024_10_118
crossref_primary_10_1109_TMECH_2021_3115997
crossref_primary_10_1016_j_procir_2022_09_093
crossref_primary_10_1016_j_procir_2024_10_113
crossref_primary_10_1063_5_0279043
crossref_primary_10_1016_j_joule_2025_102037
crossref_primary_10_1016_j_est_2023_107430
crossref_primary_10_1039_D2EE01020H
crossref_primary_10_1002_batt_202200224
crossref_primary_10_1016_j_cie_2025_111514
crossref_primary_10_1002_adts_202300125
crossref_primary_10_1002_ente_201900136
crossref_primary_10_1016_j_est_2019_100900
crossref_primary_10_1109_JAS_2022_105599
crossref_primary_10_1007_s00170_022_10347_4
crossref_primary_10_1002_batt_202300556
crossref_primary_10_1007_s00170_021_08553_7
crossref_primary_10_1002_ente_201900244
crossref_primary_10_1016_j_procir_2020_03_071
crossref_primary_10_1002_ente_202301221
crossref_primary_10_1016_j_est_2023_106938
crossref_primary_10_1002_batt_202300596
crossref_primary_10_1002_aenm_202102233
crossref_primary_10_1016_j_procir_2024_10_108
crossref_primary_10_3389_fenrg_2021_754317
crossref_primary_10_1002_batt_202400127
crossref_primary_10_1016_j_est_2024_113743
crossref_primary_10_1016_j_geits_2025_100294
crossref_primary_10_1016_j_etran_2022_100167
crossref_primary_10_1016_j_ultras_2024_107400
crossref_primary_10_1016_j_procir_2023_09_021
crossref_primary_10_3390_en17143472
crossref_primary_10_1016_j_jclepro_2021_129272
crossref_primary_10_1016_j_powera_2025_100174
crossref_primary_10_1016_j_resconrec_2021_105735
crossref_primary_10_1016_j_jpowsour_2024_235400
crossref_primary_10_1016_j_jhazmat_2025_139338
crossref_primary_10_1080_0951192X_2022_2128219
crossref_primary_10_3390_en14051406
crossref_primary_10_1039_D3EE03559J
crossref_primary_10_1016_j_engappai_2025_111657
crossref_primary_10_1016_j_jmatprotec_2023_117967
crossref_primary_10_1109_ACCESS_2023_3331734
crossref_primary_10_3390_batteries9060317
crossref_primary_10_1016_j_cirp_2019_04_066
crossref_primary_10_1002_ente_201900196
crossref_primary_10_3389_fenrg_2022_928250
crossref_primary_10_1515_zwf_2021_0154
crossref_primary_10_1016_j_conengprac_2022_105202
crossref_primary_10_1007_s10098_025_03231_8
crossref_primary_10_1016_j_apenergy_2024_124171
crossref_primary_10_1088_1757_899X_1193_1_012110
crossref_primary_10_1016_j_procir_2023_09_097
crossref_primary_10_1007_s42154_021_00169_7
crossref_primary_10_1016_j_jpowsour_2024_234668
crossref_primary_10_1016_j_procir_2022_02_150
crossref_primary_10_1080_10962247_2022_2068878
crossref_primary_10_1109_TEM_2023_3264294
crossref_primary_10_1002_ente_202201059
crossref_primary_10_1016_j_jpowsour_2023_233674
crossref_primary_10_1016_j_cie_2020_106773
crossref_primary_10_1080_0951192X_2024_2335972
crossref_primary_10_1016_j_est_2023_107533
crossref_primary_10_1016_j_jpowsour_2021_230689
crossref_primary_10_1088_2515_7639_ab3611
Cites_doi 10.1016/j.jpowsour.2018.01.081
10.1023/A:1012487302797
10.1016/j.procir.2016.11.101
10.1016/j.procir.2016.11.098
10.1016/j.jpowsour.2014.11.019
10.1016/j.cirp.2012.03.101
10.1016/j.jpowsour.2016.09.037
10.1016/j.procir.2014.05.026
10.1002/aic.10315
10.4028/www.scientific.net/AMR.907.365
10.1038/s41560-018-0130-3
10.1016/j.procir.2015.12.044
10.4028/www.scientific.net/AMR.1140.304
10.1017/S0269888910000032
10.1016/j.jbiotec.2010.04.005
10.1016/j.ijpe.2006.05.015
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2018.12.062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 366
ExternalDocumentID 10_1016_j_jpowsour_2018_12_062
S0378775318314137
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c399t-a7b7f64c0e56830fd5bd7ef3aa1ead4f5d01414d582318ad2f3b039adad032a43
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457512700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Tue Nov 18 22:41:02 EST 2025
Sat Nov 29 07:10:23 EST 2025
Fri Feb 23 02:28:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process chain
Lithium-ion cell
Data mining
Battery production
Quality management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-a7b7f64c0e56830fd5bd7ef3aa1ead4f5d01414d582318ad2f3b039adad032a43
OpenAccessLink http://mediatum.ub.tum.de/node?id=1507258
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2018_12_062
crossref_primary_10_1016_j_jpowsour_2018_12_062
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_12_062
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jemwa, Aldrich (bib15) 2005; 51
Cao, Lim, Zhou, Ho, Cheung, Motoda (bib24) 2015
Kantardzic (bib22) 2011
Knoche, Zinth, Schulz, Schnell, Gilles, Reinhart (bib8) 2016; 331
Mariscal, Marbán, Fernández (bib18) 2010; 25
Günther, Billot, Schuster, Schnell, Spingler, Gasteiger (bib6) 2016; 1140
Chapman (bib17) 2000
Cheng, Liu (bib13) 2015; 132
Kwade, Haselrieder, Leithoff, Modlinger, Dietrich, Droeder (bib1) 2018; 3
Schnell, Reinhart (bib9) 2016; 57
Huber, Tammer, Krotil, Waidmann, Hao, Seidel, Reinhart (bib16) 2016; 57
Westermeier, Reinhart, Zeilinger (bib2) 2013
Kurfer, Westermeier, Tammer, Reinhart (bib20) 2012; 61
Evans, Boreland (bib12) 2015
Weydanz, Reisenweber, Gottschalk, Schulz, Knoche, Reinhart, Masuch, Franke, Gilles (bib26) 2018; 380
Hsu, Chien (bib11) 2007; 107
accessed 9 October 2018.
Westermeier, Reinhart, Steber (bib5) 2014; 20
Reinhart, Kurfer, Westermeier, Zeilinger (bib21) 2014; 907
Knoche, Surek, Reinhart (bib7) 2016; 41
Charaniya, Le, Rangwala, Mills, Johnson, Karypis, Hu (bib14) 2010; 147
Dinger, Martin, Mosquet, Rabl, Rizoulis, Russo, Sticher (bib3) 2010
(bib10) 2000
Wood, Li, Daniel (bib4) 2015; 275
RapidMiner
Guyon, Weston, Barnhill, Vapnik (bib25) 2002; 46
(bib19) 2013
Charaniya (10.1016/j.jpowsour.2018.12.062_bib14) 2010; 147
Cao (10.1016/j.jpowsour.2018.12.062_bib24) 2015
Jemwa (10.1016/j.jpowsour.2018.12.062_bib15) 2005; 51
(10.1016/j.jpowsour.2018.12.062_bib19) 2013
10.1016/j.jpowsour.2018.12.062_bib23
Westermeier (10.1016/j.jpowsour.2018.12.062_bib5) 2014; 20
Dinger (10.1016/j.jpowsour.2018.12.062_bib3) 2010
Hsu (10.1016/j.jpowsour.2018.12.062_bib11) 2007; 107
Günther (10.1016/j.jpowsour.2018.12.062_bib6) 2016; 1140
Knoche (10.1016/j.jpowsour.2018.12.062_bib8) 2016; 331
Weydanz (10.1016/j.jpowsour.2018.12.062_bib26) 2018; 380
(10.1016/j.jpowsour.2018.12.062_bib10) 2000
Huber (10.1016/j.jpowsour.2018.12.062_bib16) 2016; 57
Reinhart (10.1016/j.jpowsour.2018.12.062_bib21) 2014; 907
Kwade (10.1016/j.jpowsour.2018.12.062_bib1) 2018; 3
Wood (10.1016/j.jpowsour.2018.12.062_bib4) 2015; 275
Kurfer (10.1016/j.jpowsour.2018.12.062_bib20) 2012; 61
Kantardzic (10.1016/j.jpowsour.2018.12.062_bib22) 2011
Cheng (10.1016/j.jpowsour.2018.12.062_bib13) 2015; 132
Chapman (10.1016/j.jpowsour.2018.12.062_bib17) 2000
Westermeier (10.1016/j.jpowsour.2018.12.062_bib2) 2013
Knoche (10.1016/j.jpowsour.2018.12.062_bib7) 2016; 41
Mariscal (10.1016/j.jpowsour.2018.12.062_bib18) 2010; 25
Schnell (10.1016/j.jpowsour.2018.12.062_bib9) 2016; 57
Evans (10.1016/j.jpowsour.2018.12.062_bib12) 2015
Guyon (10.1016/j.jpowsour.2018.12.062_bib25) 2002; 46
References_xml – volume: 61
  start-page: 1
  year: 2012
  end-page: 4
  ident: bib20
  publication-title: CIRP Ann.
– year: 2010
  ident: bib3
  article-title: The Boston Consulting Group
– volume: 57
  start-page: 585
  year: 2016
  end-page: 590
  ident: bib16
  publication-title: Procedia CIRP
– volume: 51
  start-page: 526
  year: 2005
  end-page: 543
  ident: bib15
  publication-title: AIChE J.
– reference: RapidMiner,
– volume: 132
  year: 2015
  ident: bib13
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 137
  year: 2010
  end-page: 166
  ident: bib18
  publication-title: Knowl. Eng. Rev.
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib12
  article-title: IEEE 42nd Photovoltaic Specialist Conference (PVSC)
– reference: , accessed 9 October 2018.
– volume: 107
  start-page: 88
  year: 2007
  end-page: 103
  ident: bib11
  publication-title: Int. J. Prod. Econ.
– start-page: 3
  year: 2013
  end-page: 12
  ident: bib19
  publication-title: Future Trends in Production Engineering: Proceedings of the First Conference of the German Academic Society for Production Engineering (WGP), Berlin, Germany, 8th-9th June 2011
– start-page: 1
  year: 2013
  end-page: 10
  ident: bib2
  publication-title: 2013 3rd International Electric Drives Production Conference (EDPC)
– volume: 57
  start-page: 568
  year: 2016
  end-page: 573
  ident: bib9
  publication-title: Procedia CIRP
– volume: 20
  start-page: 13
  year: 2014
  end-page: 19
  ident: bib5
  publication-title: Procedia CIRP
– volume: 275
  start-page: 234
  year: 2015
  end-page: 242
  ident: bib4
  publication-title: J. Power Sources
– volume: 1140
  start-page: 304
  year: 2016
  end-page: 311
  ident: bib6
  publication-title: AMR
– year: 2011
  ident: bib22
  article-title: Data Mining: Concepts, Models, Methods, and Algorithms
– volume: 3
  start-page: 290
  year: 2018
  end-page: 300
  ident: bib1
  publication-title: Nat. Energy
– year: 2015
  ident: bib24
  article-title: Advances in Knowledge Discovery and Data Mining
– year: 2000
  ident: bib17
  article-title: CRISP-DM 1.0: Step-by-step Data Mining Guide
– volume: 41
  start-page: 405
  year: 2016
  end-page: 410
  ident: bib7
  publication-title: Procedia CIRP
– volume: 331
  start-page: 267
  year: 2016
  end-page: 276
  ident: bib8
  publication-title: J. Power Sources
– volume: 907
  start-page: 365
  year: 2014
  end-page: 378
  ident: bib21
  publication-title: AMR
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib25
  publication-title: Mach. Learn.
– volume: 380
  start-page: 126
  year: 2018
  end-page: 134
  ident: bib26
  publication-title: J. Power Sources
– volume: 147
  start-page: 186
  year: 2010
  end-page: 197
  ident: bib14
  publication-title: J. Biotechnol.
– start-page: 249
  year: 2000
  end-page: 252
  ident: bib10
  publication-title: Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)
– volume: 380
  start-page: 126
  year: 2018
  ident: 10.1016/j.jpowsour.2018.12.062_bib26
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.081
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.jpowsour.2018.12.062_bib25
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 132
  year: 2015
  ident: 10.1016/j.jpowsour.2018.12.062_bib13
  publication-title: J. Appl. Polym. Sci.
– year: 2010
  ident: 10.1016/j.jpowsour.2018.12.062_bib3
– start-page: 3
  year: 2013
  ident: 10.1016/j.jpowsour.2018.12.062_bib19
– year: 2015
  ident: 10.1016/j.jpowsour.2018.12.062_bib24
– volume: 57
  start-page: 585
  year: 2016
  ident: 10.1016/j.jpowsour.2018.12.062_bib16
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.101
– volume: 57
  start-page: 568
  year: 2016
  ident: 10.1016/j.jpowsour.2018.12.062_bib9
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.11.098
– volume: 275
  start-page: 234
  year: 2015
  ident: 10.1016/j.jpowsour.2018.12.062_bib4
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.019
– volume: 61
  start-page: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2018.12.062_bib20
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2012.03.101
– start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2018.12.062_bib2
– ident: 10.1016/j.jpowsour.2018.12.062_bib23
– year: 2000
  ident: 10.1016/j.jpowsour.2018.12.062_bib17
– volume: 331
  start-page: 267
  year: 2016
  ident: 10.1016/j.jpowsour.2018.12.062_bib8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.037
– year: 2011
  ident: 10.1016/j.jpowsour.2018.12.062_bib22
– volume: 20
  start-page: 13
  year: 2014
  ident: 10.1016/j.jpowsour.2018.12.062_bib5
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2014.05.026
– start-page: 249
  year: 2000
  ident: 10.1016/j.jpowsour.2018.12.062_bib10
– volume: 51
  start-page: 526
  year: 2005
  ident: 10.1016/j.jpowsour.2018.12.062_bib15
  publication-title: AIChE J.
  doi: 10.1002/aic.10315
– volume: 907
  start-page: 365
  year: 2014
  ident: 10.1016/j.jpowsour.2018.12.062_bib21
  publication-title: AMR
  doi: 10.4028/www.scientific.net/AMR.907.365
– volume: 3
  start-page: 290
  year: 2018
  ident: 10.1016/j.jpowsour.2018.12.062_bib1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0130-3
– volume: 41
  start-page: 405
  year: 2016
  ident: 10.1016/j.jpowsour.2018.12.062_bib7
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.12.044
– volume: 1140
  start-page: 304
  year: 2016
  ident: 10.1016/j.jpowsour.2018.12.062_bib6
  publication-title: AMR
  doi: 10.4028/www.scientific.net/AMR.1140.304
– volume: 25
  start-page: 137
  year: 2010
  ident: 10.1016/j.jpowsour.2018.12.062_bib18
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888910000032
– start-page: 1
  year: 2015
  ident: 10.1016/j.jpowsour.2018.12.062_bib12
– volume: 147
  start-page: 186
  year: 2010
  ident: 10.1016/j.jpowsour.2018.12.062_bib14
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2010.04.005
– volume: 107
  start-page: 88
  year: 2007
  ident: 10.1016/j.jpowsour.2018.12.062_bib11
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2006.05.015
SSID ssj0001170
Score 2.6069431
Snippet Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 360
SubjectTerms Battery production
Data mining
Lithium-ion cell
Process chain
Quality management
Title Data mining in lithium-ion battery cell production
URI https://dx.doi.org/10.1016/j.jpowsour.2018.12.062
Volume 413
WOSCitedRecordID wos000457512700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BygEOiKcotJUP3KIttnedXR-rkooCipBapNysfdhqotaJ0hTKv2fGs3aMWlQQ4mJFjjbezHyanRnPzMfY25GXOKnMcgsxD5fWe55ngGXpdOLgTE-MbVhLPqvJRE-n-ZeQzLls6ARUXevr63z5X1UN90DZ2Dr7F-rufhRuwGdQOlxB7XD9I8W_N2szvGh4HzCZAW722ezqgqOabTNM88cQs_VYmeVpdOxvHNQlEqgNKbvfed4n7qwrjFlAZNxZ9QmcXt9nRCx1uFhBwN0D3hjLJhvEHGHF3-aLT5i3qD0ld2ti8m6TENj3lHJqw6TM2I3uGOrIgghVKRoGvF-SgdVK8FTRaN7WAstE9GyoIIKBcBwLImW5Yekp6TDfn4MwUBJYpaebzG6w7r9O0T7BzeBewIQl8Dx1n23BNnI9YFsHx-Ppx-74Riqe5tVT2Hyvrfz2p93u0fS8lNMn7HHQXnRAsHjK7pX1M_aoN3TyOUsRIBEBJJrVUQ8gUQBIhACJNgB5wb4ejU8PP_DAnMEdOJxrbpRV1Ui6uMxGWsSVz6xXZSWMScByyCrzWN8rfYYvgbXxaSVsLHLjjY9FaqR4yQb1oi5fsShz2qo0Lj040lKnRmNzdW4Sk7sSgot0m2Xtvy9cGCuP7CbnRVs_OC9aqRUotSJJC5DaNnvXrVvSYJU7V-StcIvgHpLbVwAm7lj7-h_WvmEPN5DfYYP16qrcZQ_ct_XscrUX4PMTcF-OMQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+in+lithium-ion+battery+cell+production&rft.jtitle=Journal+of+power+sources&rft.au=Schnell%2C+Joscha&rft.au=Nentwich%2C+Corbinian&rft.au=Endres%2C+Florian&rft.au=Kollenda%2C+Anna&rft.date=2019-02-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=413&rft.spage=360&rft.epage=366&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.12.062&rft.externalDocID=S0378775318314137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon