Data mining in lithium-ion battery cell production
Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well...
Saved in:
| Published in: | Journal of power sources Vol. 413; pp. 360 - 366 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.02.2019
|
| Subjects: | |
| ISSN: | 0378-7753, 1873-2755 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well as the prediction of the product quality before the cumbersome and costly formation and aging procedure. Several Data mining methods, such as Generalized Linear Model (GLM), Artificial Neural Networks (ANN), Support Vector Regression (SVR), Decision Trees (DT), Random Forest (RF), and Gradient Boosted Trees (GBT) are compared and evaluated. Best results are yielded by an application of GLM, RF, and GBT for prediction of battery cell capacity before the expensive formation process. Key quality drivers identified are the electrode fabrication processes, as well as the electrolyte filling process during cell assembly. This is, to our knowledge, the first time data from a real battery production line has been systematically processed and analyzed along the whole process chain. The results of this paper can assist to manufacture better batteries and to reduce costs of lithium-ion cells by providing a systematic procedure for data acquisition and by lowering scrap rates during production.
[Display omitted]
•Data mining approaches were applied to a real battery production line.•A systematic procedure for data acquisition, processing, and analysis is given.•Electrode fabrication and electrolyte filling are identified as key quality drivers.•The results can help to decrease battery production cost by reducing scrap rates. |
|---|---|
| AbstractList | Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the data captured during the manufacturing processes. Key goals include the identification of process dependencies and key quality drivers as well as the prediction of the product quality before the cumbersome and costly formation and aging procedure. Several Data mining methods, such as Generalized Linear Model (GLM), Artificial Neural Networks (ANN), Support Vector Regression (SVR), Decision Trees (DT), Random Forest (RF), and Gradient Boosted Trees (GBT) are compared and evaluated. Best results are yielded by an application of GLM, RF, and GBT for prediction of battery cell capacity before the expensive formation process. Key quality drivers identified are the electrode fabrication processes, as well as the electrolyte filling process during cell assembly. This is, to our knowledge, the first time data from a real battery production line has been systematically processed and analyzed along the whole process chain. The results of this paper can assist to manufacture better batteries and to reduce costs of lithium-ion cells by providing a systematic procedure for data acquisition and by lowering scrap rates during production.
[Display omitted]
•Data mining approaches were applied to a real battery production line.•A systematic procedure for data acquisition, processing, and analysis is given.•Electrode fabrication and electrolyte filling are identified as key quality drivers.•The results can help to decrease battery production cost by reducing scrap rates. |
| Author | Schnell, Joscha Distel, Fabian Nentwich, Corbinian Reinhart, Gunther Endres, Florian Knoche, Thomas Kollenda, Anna |
| Author_xml | – sequence: 1 givenname: Joscha surname: Schnell fullname: Schnell, Joscha email: Joscha.Schnell@iwb.mw.tum.de – sequence: 2 givenname: Corbinian surname: Nentwich fullname: Nentwich, Corbinian – sequence: 3 givenname: Florian surname: Endres fullname: Endres, Florian – sequence: 4 givenname: Anna surname: Kollenda fullname: Kollenda, Anna – sequence: 5 givenname: Fabian surname: Distel fullname: Distel, Fabian – sequence: 6 givenname: Thomas surname: Knoche fullname: Knoche, Thomas – sequence: 7 givenname: Gunther surname: Reinhart fullname: Reinhart, Gunther |
| BookMark | eNqFj9FKwzAYhYNMcJu-gvQFWv8kbdOBF8p0Kgy80evwN0k1pUtGkil7ezumN97s6sCB73C-GZk47wwh1xQKCrS-6Yt-67-j34WCAW0Kygqo2RmZ0kbwnImqmpApcNHkQlT8gsxi7AGAUgFTwh4wYbaxzrqPzLpssOnT7ja59S5rMSUT9pkyw5Btg9c7lcb-kpx3OERz9Ztz8r56fFs-5-vXp5fl_TpXfLFIOYpWdHWpwFR1w6HTVauF6TgiNajLrtJAS1rqqmGcNqhZx1vgC9SogTMs-ZzcHndV8DEG00llEx4epIB2kBTkwV_28s9fHvwlZXL0H_H6H74NdoNhfxq8O4JmlPuyJsiorHHKaBuMSlJ7e2riBycZfR0 |
| CitedBy_id | crossref_primary_10_1016_j_procir_2021_01_122 crossref_primary_10_1016_j_procs_2021_01_199 crossref_primary_10_1002_sus2_70030 crossref_primary_10_1016_j_procir_2023_08_031 crossref_primary_10_1080_09537287_2024_2414334 crossref_primary_10_1016_j_procir_2021_11_170 crossref_primary_10_3233_JIFS_189408 crossref_primary_10_1016_j_cie_2021_107227 crossref_primary_10_1021_acsaem_5c01298 crossref_primary_10_1016_j_aei_2020_101101 crossref_primary_10_1016_j_procir_2021_11_178 crossref_primary_10_1016_j_est_2019_101170 crossref_primary_10_1016_j_procir_2021_11_177 crossref_primary_10_1002_batt_202400539 crossref_primary_10_3390_batteries9020089 crossref_primary_10_1016_j_est_2020_101828 crossref_primary_10_1002_ente_201901237 crossref_primary_10_1002_ente_202200911 crossref_primary_10_1007_s11740_024_01281_3 crossref_primary_10_1002_ente_201900026 crossref_primary_10_1002_batt_202500356 crossref_primary_10_1016_j_fub_2025_100090 crossref_primary_10_1016_j_procir_2024_08_267 crossref_primary_10_1016_j_est_2023_108803 crossref_primary_10_1109_TMECH_2020_3049046 crossref_primary_10_3390_pr8091068 crossref_primary_10_1007_s11431_025_3005_9 crossref_primary_10_1177_01423312211057981 crossref_primary_10_1002_batt_201900135 crossref_primary_10_1002_batt_202300046 crossref_primary_10_1016_j_procir_2024_10_118 crossref_primary_10_1109_TMECH_2021_3115997 crossref_primary_10_1016_j_procir_2022_09_093 crossref_primary_10_1016_j_procir_2024_10_113 crossref_primary_10_1063_5_0279043 crossref_primary_10_1016_j_joule_2025_102037 crossref_primary_10_1016_j_est_2023_107430 crossref_primary_10_1039_D2EE01020H crossref_primary_10_1002_batt_202200224 crossref_primary_10_1016_j_cie_2025_111514 crossref_primary_10_1002_adts_202300125 crossref_primary_10_1002_ente_201900136 crossref_primary_10_1016_j_est_2019_100900 crossref_primary_10_1109_JAS_2022_105599 crossref_primary_10_1007_s00170_022_10347_4 crossref_primary_10_1002_batt_202300556 crossref_primary_10_1007_s00170_021_08553_7 crossref_primary_10_1002_ente_201900244 crossref_primary_10_1016_j_procir_2020_03_071 crossref_primary_10_1002_ente_202301221 crossref_primary_10_1016_j_est_2023_106938 crossref_primary_10_1002_batt_202300596 crossref_primary_10_1002_aenm_202102233 crossref_primary_10_1016_j_procir_2024_10_108 crossref_primary_10_3389_fenrg_2021_754317 crossref_primary_10_1002_batt_202400127 crossref_primary_10_1016_j_est_2024_113743 crossref_primary_10_1016_j_geits_2025_100294 crossref_primary_10_1016_j_etran_2022_100167 crossref_primary_10_1016_j_ultras_2024_107400 crossref_primary_10_1016_j_procir_2023_09_021 crossref_primary_10_3390_en17143472 crossref_primary_10_1016_j_jclepro_2021_129272 crossref_primary_10_1016_j_powera_2025_100174 crossref_primary_10_1016_j_resconrec_2021_105735 crossref_primary_10_1016_j_jpowsour_2024_235400 crossref_primary_10_1016_j_jhazmat_2025_139338 crossref_primary_10_1080_0951192X_2022_2128219 crossref_primary_10_3390_en14051406 crossref_primary_10_1039_D3EE03559J crossref_primary_10_1016_j_engappai_2025_111657 crossref_primary_10_1016_j_jmatprotec_2023_117967 crossref_primary_10_1109_ACCESS_2023_3331734 crossref_primary_10_3390_batteries9060317 crossref_primary_10_1016_j_cirp_2019_04_066 crossref_primary_10_1002_ente_201900196 crossref_primary_10_3389_fenrg_2022_928250 crossref_primary_10_1515_zwf_2021_0154 crossref_primary_10_1016_j_conengprac_2022_105202 crossref_primary_10_1007_s10098_025_03231_8 crossref_primary_10_1016_j_apenergy_2024_124171 crossref_primary_10_1088_1757_899X_1193_1_012110 crossref_primary_10_1016_j_procir_2023_09_097 crossref_primary_10_1007_s42154_021_00169_7 crossref_primary_10_1016_j_jpowsour_2024_234668 crossref_primary_10_1016_j_procir_2022_02_150 crossref_primary_10_1080_10962247_2022_2068878 crossref_primary_10_1109_TEM_2023_3264294 crossref_primary_10_1002_ente_202201059 crossref_primary_10_1016_j_jpowsour_2023_233674 crossref_primary_10_1016_j_cie_2020_106773 crossref_primary_10_1080_0951192X_2024_2335972 crossref_primary_10_1016_j_est_2023_107533 crossref_primary_10_1016_j_jpowsour_2021_230689 crossref_primary_10_1088_2515_7639_ab3611 |
| Cites_doi | 10.1016/j.jpowsour.2018.01.081 10.1023/A:1012487302797 10.1016/j.procir.2016.11.101 10.1016/j.procir.2016.11.098 10.1016/j.jpowsour.2014.11.019 10.1016/j.cirp.2012.03.101 10.1016/j.jpowsour.2016.09.037 10.1016/j.procir.2014.05.026 10.1002/aic.10315 10.4028/www.scientific.net/AMR.907.365 10.1038/s41560-018-0130-3 10.1016/j.procir.2015.12.044 10.4028/www.scientific.net/AMR.1140.304 10.1017/S0269888910000032 10.1016/j.jbiotec.2010.04.005 10.1016/j.ijpe.2006.05.015 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2018.12.062 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2755 |
| EndPage | 366 |
| ExternalDocumentID | 10_1016_j_jpowsour_2018_12_062 S0378775318314137 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c399t-a7b7f64c0e56830fd5bd7ef3aa1ead4f5d01414d582318ad2f3b039adad032a43 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457512700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7753 |
| IngestDate | Tue Nov 18 22:41:02 EST 2025 Sat Nov 29 07:10:23 EST 2025 Fri Feb 23 02:28:13 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process chain Lithium-ion cell Data mining Battery production Quality management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-a7b7f64c0e56830fd5bd7ef3aa1ead4f5d01414d582318ad2f3b039adad032a43 |
| OpenAccessLink | http://mediatum.ub.tum.de/node?id=1507258 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2018_12_062 crossref_primary_10_1016_j_jpowsour_2018_12_062 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2018_12_062 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-15 |
| PublicationDateYYYYMMDD | 2019-02-15 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jemwa, Aldrich (bib15) 2005; 51 Cao, Lim, Zhou, Ho, Cheung, Motoda (bib24) 2015 Kantardzic (bib22) 2011 Knoche, Zinth, Schulz, Schnell, Gilles, Reinhart (bib8) 2016; 331 Mariscal, Marbán, Fernández (bib18) 2010; 25 Günther, Billot, Schuster, Schnell, Spingler, Gasteiger (bib6) 2016; 1140 Chapman (bib17) 2000 Cheng, Liu (bib13) 2015; 132 Kwade, Haselrieder, Leithoff, Modlinger, Dietrich, Droeder (bib1) 2018; 3 Schnell, Reinhart (bib9) 2016; 57 Huber, Tammer, Krotil, Waidmann, Hao, Seidel, Reinhart (bib16) 2016; 57 Westermeier, Reinhart, Zeilinger (bib2) 2013 Kurfer, Westermeier, Tammer, Reinhart (bib20) 2012; 61 Evans, Boreland (bib12) 2015 Weydanz, Reisenweber, Gottschalk, Schulz, Knoche, Reinhart, Masuch, Franke, Gilles (bib26) 2018; 380 Hsu, Chien (bib11) 2007; 107 accessed 9 October 2018. Westermeier, Reinhart, Steber (bib5) 2014; 20 Reinhart, Kurfer, Westermeier, Zeilinger (bib21) 2014; 907 Knoche, Surek, Reinhart (bib7) 2016; 41 Charaniya, Le, Rangwala, Mills, Johnson, Karypis, Hu (bib14) 2010; 147 Dinger, Martin, Mosquet, Rabl, Rizoulis, Russo, Sticher (bib3) 2010 (bib10) 2000 Wood, Li, Daniel (bib4) 2015; 275 RapidMiner Guyon, Weston, Barnhill, Vapnik (bib25) 2002; 46 (bib19) 2013 Charaniya (10.1016/j.jpowsour.2018.12.062_bib14) 2010; 147 Cao (10.1016/j.jpowsour.2018.12.062_bib24) 2015 Jemwa (10.1016/j.jpowsour.2018.12.062_bib15) 2005; 51 (10.1016/j.jpowsour.2018.12.062_bib19) 2013 10.1016/j.jpowsour.2018.12.062_bib23 Westermeier (10.1016/j.jpowsour.2018.12.062_bib5) 2014; 20 Dinger (10.1016/j.jpowsour.2018.12.062_bib3) 2010 Hsu (10.1016/j.jpowsour.2018.12.062_bib11) 2007; 107 Günther (10.1016/j.jpowsour.2018.12.062_bib6) 2016; 1140 Knoche (10.1016/j.jpowsour.2018.12.062_bib8) 2016; 331 Weydanz (10.1016/j.jpowsour.2018.12.062_bib26) 2018; 380 (10.1016/j.jpowsour.2018.12.062_bib10) 2000 Huber (10.1016/j.jpowsour.2018.12.062_bib16) 2016; 57 Reinhart (10.1016/j.jpowsour.2018.12.062_bib21) 2014; 907 Kwade (10.1016/j.jpowsour.2018.12.062_bib1) 2018; 3 Wood (10.1016/j.jpowsour.2018.12.062_bib4) 2015; 275 Kurfer (10.1016/j.jpowsour.2018.12.062_bib20) 2012; 61 Kantardzic (10.1016/j.jpowsour.2018.12.062_bib22) 2011 Cheng (10.1016/j.jpowsour.2018.12.062_bib13) 2015; 132 Chapman (10.1016/j.jpowsour.2018.12.062_bib17) 2000 Westermeier (10.1016/j.jpowsour.2018.12.062_bib2) 2013 Knoche (10.1016/j.jpowsour.2018.12.062_bib7) 2016; 41 Mariscal (10.1016/j.jpowsour.2018.12.062_bib18) 2010; 25 Schnell (10.1016/j.jpowsour.2018.12.062_bib9) 2016; 57 Evans (10.1016/j.jpowsour.2018.12.062_bib12) 2015 Guyon (10.1016/j.jpowsour.2018.12.062_bib25) 2002; 46 |
| References_xml | – volume: 61 start-page: 1 year: 2012 end-page: 4 ident: bib20 publication-title: CIRP Ann. – year: 2010 ident: bib3 article-title: The Boston Consulting Group – volume: 57 start-page: 585 year: 2016 end-page: 590 ident: bib16 publication-title: Procedia CIRP – volume: 51 start-page: 526 year: 2005 end-page: 543 ident: bib15 publication-title: AIChE J. – reference: RapidMiner, – volume: 132 year: 2015 ident: bib13 publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 137 year: 2010 end-page: 166 ident: bib18 publication-title: Knowl. Eng. Rev. – start-page: 1 year: 2015 end-page: 5 ident: bib12 article-title: IEEE 42nd Photovoltaic Specialist Conference (PVSC) – reference: , accessed 9 October 2018. – volume: 107 start-page: 88 year: 2007 end-page: 103 ident: bib11 publication-title: Int. J. Prod. Econ. – start-page: 3 year: 2013 end-page: 12 ident: bib19 publication-title: Future Trends in Production Engineering: Proceedings of the First Conference of the German Academic Society for Production Engineering (WGP), Berlin, Germany, 8th-9th June 2011 – start-page: 1 year: 2013 end-page: 10 ident: bib2 publication-title: 2013 3rd International Electric Drives Production Conference (EDPC) – volume: 57 start-page: 568 year: 2016 end-page: 573 ident: bib9 publication-title: Procedia CIRP – volume: 20 start-page: 13 year: 2014 end-page: 19 ident: bib5 publication-title: Procedia CIRP – volume: 275 start-page: 234 year: 2015 end-page: 242 ident: bib4 publication-title: J. Power Sources – volume: 1140 start-page: 304 year: 2016 end-page: 311 ident: bib6 publication-title: AMR – year: 2011 ident: bib22 article-title: Data Mining: Concepts, Models, Methods, and Algorithms – volume: 3 start-page: 290 year: 2018 end-page: 300 ident: bib1 publication-title: Nat. Energy – year: 2015 ident: bib24 article-title: Advances in Knowledge Discovery and Data Mining – year: 2000 ident: bib17 article-title: CRISP-DM 1.0: Step-by-step Data Mining Guide – volume: 41 start-page: 405 year: 2016 end-page: 410 ident: bib7 publication-title: Procedia CIRP – volume: 331 start-page: 267 year: 2016 end-page: 276 ident: bib8 publication-title: J. Power Sources – volume: 907 start-page: 365 year: 2014 end-page: 378 ident: bib21 publication-title: AMR – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib25 publication-title: Mach. Learn. – volume: 380 start-page: 126 year: 2018 end-page: 134 ident: bib26 publication-title: J. Power Sources – volume: 147 start-page: 186 year: 2010 end-page: 197 ident: bib14 publication-title: J. Biotechnol. – start-page: 249 year: 2000 end-page: 252 ident: bib10 publication-title: Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130) – volume: 380 start-page: 126 year: 2018 ident: 10.1016/j.jpowsour.2018.12.062_bib26 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.081 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.jpowsour.2018.12.062_bib25 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 132 year: 2015 ident: 10.1016/j.jpowsour.2018.12.062_bib13 publication-title: J. Appl. Polym. Sci. – year: 2010 ident: 10.1016/j.jpowsour.2018.12.062_bib3 – start-page: 3 year: 2013 ident: 10.1016/j.jpowsour.2018.12.062_bib19 – year: 2015 ident: 10.1016/j.jpowsour.2018.12.062_bib24 – volume: 57 start-page: 585 year: 2016 ident: 10.1016/j.jpowsour.2018.12.062_bib16 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.101 – volume: 57 start-page: 568 year: 2016 ident: 10.1016/j.jpowsour.2018.12.062_bib9 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.11.098 – volume: 275 start-page: 234 year: 2015 ident: 10.1016/j.jpowsour.2018.12.062_bib4 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.019 – volume: 61 start-page: 1 year: 2012 ident: 10.1016/j.jpowsour.2018.12.062_bib20 publication-title: CIRP Ann. doi: 10.1016/j.cirp.2012.03.101 – start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2018.12.062_bib2 – ident: 10.1016/j.jpowsour.2018.12.062_bib23 – year: 2000 ident: 10.1016/j.jpowsour.2018.12.062_bib17 – volume: 331 start-page: 267 year: 2016 ident: 10.1016/j.jpowsour.2018.12.062_bib8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.037 – year: 2011 ident: 10.1016/j.jpowsour.2018.12.062_bib22 – volume: 20 start-page: 13 year: 2014 ident: 10.1016/j.jpowsour.2018.12.062_bib5 publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.05.026 – start-page: 249 year: 2000 ident: 10.1016/j.jpowsour.2018.12.062_bib10 – volume: 51 start-page: 526 year: 2005 ident: 10.1016/j.jpowsour.2018.12.062_bib15 publication-title: AIChE J. doi: 10.1002/aic.10315 – volume: 907 start-page: 365 year: 2014 ident: 10.1016/j.jpowsour.2018.12.062_bib21 publication-title: AMR doi: 10.4028/www.scientific.net/AMR.907.365 – volume: 3 start-page: 290 year: 2018 ident: 10.1016/j.jpowsour.2018.12.062_bib1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0130-3 – volume: 41 start-page: 405 year: 2016 ident: 10.1016/j.jpowsour.2018.12.062_bib7 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.12.044 – volume: 1140 start-page: 304 year: 2016 ident: 10.1016/j.jpowsour.2018.12.062_bib6 publication-title: AMR doi: 10.4028/www.scientific.net/AMR.1140.304 – volume: 25 start-page: 137 year: 2010 ident: 10.1016/j.jpowsour.2018.12.062_bib18 publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888910000032 – start-page: 1 year: 2015 ident: 10.1016/j.jpowsour.2018.12.062_bib12 – volume: 147 start-page: 186 year: 2010 ident: 10.1016/j.jpowsour.2018.12.062_bib14 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.04.005 – volume: 107 start-page: 88 year: 2007 ident: 10.1016/j.jpowsour.2018.12.062_bib11 publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2006.05.015 |
| SSID | ssj0001170 |
| Score | 2.6069431 |
| Snippet | Data mining methods are used to analyze and improve production processes in a lithium-ion cell manufacturing line. The CRISP-DM methodology is applied to the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 360 |
| SubjectTerms | Battery production Data mining Lithium-ion cell Process chain Quality management |
| Title | Data mining in lithium-ion battery cell production |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2018.12.062 |
| Volume | 413 |
| WOSCitedRecordID | wos000457512700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdY2cP2MI19aGyA8rC3yiyJk9p5RKxofKiaBJP6FjmxLVpBWpWysf9-dzknDYKJIbSXqHLlxLn76Xz-5T4Y-wwnBOciF3GTDSxPhEo4bMKOu0QWpYit1q7W9IkcjdR4nH33ZM5V3U5AVpW6ucnm_1XVMAbKxtTZR6i7vSkMwG9QOlxB7XD9J8V_1Uvdv6z7PiCZAW72-eT6kqOai7qY5u8-svUYmWWodOxfHNQ5NlDrE7vfet6n5XkbGDODk3Fr1Uewe_2aUGOp_dkCDtwd4A0xbLJGzAFG_K3-OEbeojJE7lbUybshITDvKeaUhknM2J3sGMrIghOqlFQMeNeSgVVS8FhSad7GAieR6NhQQQ0G_HYsqCnLHUtPpMN0dwrCQElglJ6qmV1v3W9X0T7FxeBawIRF8Dz5jK3DMjLVY-t7h8PxUbt9Yyue-tOTX3wnrfz-p93v0XS8lLPX7JXXXrBHsNhga7Z6w152ik6-ZTECJCCABJMq6AAk8AAJECDBCiDv2I-D4dn-N-47Z_ASHM4l17KQbpCUoU0HSoTOpIWR1gmtI7AciUsNxvcmJsWPwEqb2IkiFJk22oQi1ol4z3rVrLIfWKBTFZYWnGrhwPsPpYZ7SqczGChcqtQmS5u3z0tfVh67m1zkTfzgNG-klqPU8ijOQWqb7Es7b06FVR6ckTXCzb17SG5fDph4YO7HJ8z9xF6sIL_FesvFtd1mz8ufy8nVYsfD5w8Y9I8Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+in+lithium-ion+battery+cell+production&rft.jtitle=Journal+of+power+sources&rft.au=Schnell%2C+Joscha&rft.au=Nentwich%2C+Corbinian&rft.au=Endres%2C+Florian&rft.au=Kollenda%2C+Anna&rft.date=2019-02-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=413&rft.spage=360&rft.epage=366&rft_id=info:doi/10.1016%2Fj.jpowsour.2018.12.062&rft.externalDocID=S0378775318314137 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |