Study of the interplay between lower-order and higher-order energetic strain-gradient effects in polycrystal plasticity
Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local the...
Gespeichert in:
| Veröffentlicht in: | Journal of the mechanics and physics of solids Jg. 164; S. 104906 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Elsevier Ltd
01.07.2022
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 0022-5096, 1873-4782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce.
•The interplay between strain-gradient length-scale parameters is studied.•Increasing the higher-order energetic parameter increases polycrystal yield strength.•Increasing the lower-order (LO) length scale increases the strain-hardening rate.•The higher-order effect reduces gradients, limiting the influence of the LO effect.•The higher-order energetic effect enhances the local Bauschinger effect. |
|---|---|
| AbstractList | in this report strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce. Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce. •The interplay between strain-gradient length-scale parameters is studied.•Increasing the higher-order energetic parameter increases polycrystal yield strength.•Increasing the lower-order (LO) length scale increases the strain-hardening rate.•The higher-order effect reduces gradients, limiting the influence of the LO effect.•The higher-order energetic effect enhances the local Bauschinger effect. Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as "isotropic" (yield surface expansion) and "kinematic" (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce. |
| ArticleNumber | 104906 |
| Author | Christodoulou, Paul G. Beyerlein, Irene J. Lebensohn, Ricardo A. |
| Author_xml | – sequence: 1 givenname: Paul G. orcidid: 0000-0002-5259-5785 surname: Christodoulou fullname: Christodoulou, Paul G. email: pchristodoulou@ucsb.edu organization: Materials Department, University of California, Santa Barbara, Santa Barbara, 93117, CA, USA – sequence: 2 givenname: Ricardo A. orcidid: 0000-0002-3152-9105 surname: Lebensohn fullname: Lebensohn, Ricardo A. email: lebenso@lanl.gov organization: Theoretical Division, Los Alamos National Laboratory, 87845, Los Alamos, NM, USA – sequence: 3 givenname: Irene J. orcidid: 0000-0002-5489-5132 surname: Beyerlein fullname: Beyerlein, Irene J. email: beyerlein@ucsb.edu organization: Materials Department, University of California, Santa Barbara, Santa Barbara, 93117, CA, USA |
| BackLink | https://www.osti.gov/servlets/purl/1865036$$D View this record in Osti.gov |
| BookMark | eNp9kc1u3CAUhVGVSp38vEBXqF17AsZ4sJRNFaVNpEhdNFkjDJcZLAdcYDLy2xfLVRZZZIV0-c65B845OvPBA0JfKdlSQtvrYTu8TGlbk7oug6Yj7Se0oWLHqmYn6jO0IeWm4qRrv6DzlAZCCCc7ukGnP_loZhwszgfAzmeI06hm3EM-AXg8hhPEKkQDEStv8MHtD28D8BD3kJ3GKUflfLWPyjjwGYO1oHMqhngK46zjnLIacbFOBXd5vkSfrRoTXP0_L9Dzz7un2_vq8fevh9sfj5VmXZerjoEQ1igloOu5obbhvN9x3mqrmQWhBefKNkwo3TSqF8qYBVWk7y30tGcX6NvqG8pimcpq0AcdvC_xJBUtJ6wt0PcVmmL4e4SU5RCO0Zdcsm47yilrWFcosVI6hpQiWFncVHbBL48fJSVy6UIOculCLl3ItYsird9Jp-heVJw_Ft2sIij_8-ogLvHBazAuLulNcB_J_wHOqKjZ |
| CitedBy_id | crossref_primary_10_1016_j_msea_2024_147690 crossref_primary_10_1016_j_jallcom_2023_169163 crossref_primary_10_1016_j_euromechsol_2024_105548 crossref_primary_10_1016_j_cma_2025_118355 crossref_primary_10_1016_j_ijplas_2022_103410 crossref_primary_10_1016_j_ijsolstr_2025_113589 |
| Cites_doi | 10.1016/j.ijplas.2003.08.001 10.1016/0022-5096(61)90018-7 10.1016/S0022-5096(02)00081-9 10.1002/zamm.201200101 10.1016/j.ijsolstr.2014.12.019 10.1016/j.actamat.2006.01.005 10.1016/S0022-5096(01)00049-7 10.1016/j.jmps.2007.07.015 10.1557/JMR.1995.0853 10.1016/S1359-6454(01)00172-0 10.1080/14786430802154815 10.1016/S0022-5096(99)00059-9 10.1016/j.ijplas.2004.11.001 10.1016/j.scriptamat.2010.05.014 10.1016/0956-7151(94)90502-9 10.1016/j.jmps.2005.01.004 10.1016/j.actamat.2008.10.057 10.1016/S1359-6454(98)00153-0 10.1080/14786437008238426 10.1016/S0022-5096(00)00006-5 10.1016/j.jmps.2004.04.010 10.1016/S0065-2156(08)70388-0 10.1016/j.actamat.2008.04.016 10.1016/j.jmps.2004.08.008 10.1016/j.ijplas.2014.01.010 10.1016/j.ijplas.2006.10.013 10.1016/S0022-5096(98)00103-3 10.1016/j.ijplas.2013.06.010 10.1016/j.jmps.2004.06.006 10.1002/nme.275 10.1088/0370-1301/64/9/303 10.1115/1.4030323 10.1016/S0045-7825(97)00218-1 10.1016/j.ijplas.2006.08.003 10.1088/0965-0393/18/1/015009 10.1016/j.actamat.2005.05.036 10.1016/0001-6160(53)90054-6 10.1016/S0022-5096(99)00075-7 10.1016/j.pmatsci.2013.06.001 10.1016/j.ijplas.2018.08.016 10.1016/j.jmps.2016.03.023 10.1007/s10409-015-0468-8 10.1016/0022-5096(93)90072-N 10.1016/j.jmps.2004.12.008 10.1016/j.euromechsol.2011.04.006 10.1016/S0022-5096(01)00104-1 10.1016/S0022-5096(99)00022-8 10.1016/j.ijplas.2011.12.005 10.1016/j.ijplas.2018.07.015 10.1115/1.3167205 10.1016/j.jmps.2013.08.014 10.1016/j.ijsolstr.2014.08.009 10.1557/JMR.2001.0146 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2022 |
| CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) Texas A & M Univ., College Station, TX (United States) |
| CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) – name: Texas A & M Univ., College Station, TX (United States) |
| DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M OIOZB OTOTI |
| DOI | 10.1016/j.jmps.2022.104906 |
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4782 |
| ExternalDocumentID | 1865036 10_1016_j_jmps_2022_104906 S0022509622001089 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SST SSZ T5K VH1 WUQ XFK XPP YQT ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M AALMO ABPIF ABPTK OIOZB OTOTI |
| ID | FETCH-LOGICAL-c399t-93e88fdaa8e9b5d1f455b7556cfc3fe8c855af438ac44ab8adda8e9a0bbfeb1b3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-5096 |
| IngestDate | Thu May 18 22:34:15 EDT 2023 Sun Nov 30 04:43:22 EST 2025 Tue Nov 18 22:12:30 EST 2025 Sat Nov 29 07:29:06 EST 2025 Fri Feb 23 02:40:15 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Strain-gradient plasticity A. Dislocations B. Crystal plasticity C. Numerical algorithms B. Elastic-viscoplastic material |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-93e88fdaa8e9b5d1f455b7556cfc3fe8c855af438ac44ab8adda8e9a0bbfeb1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 89233218CNA000001; NA0003857 LA-UR-21-32270 USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0002-5489-5132 0000-0002-3152-9105 0000-0002-5259-5785 0000000254895132 0000000252595785 0000000231529105 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1865036 |
| PQID | 2691513439 |
| PQPubID | 2045442 |
| ParticipantIDs | osti_scitechconnect_1865036 proquest_journals_2691513439 crossref_citationtrail_10_1016_j_jmps_2022_104906 crossref_primary_10_1016_j_jmps_2022_104906 elsevier_sciencedirect_doi_10_1016_j_jmps_2022_104906 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationTitle | Journal of the mechanics and physics of solids |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Hutchinson (b35) 1976; 348 Forest (b23) 2008; 88 Moulinec, Suquet (b53) 1998; 157 Ashby (b5) 1970; 21 Hwang, Guo, Jiang, Huang, Zhuang (b36) 2004; 20 Stölken, Evans (b60) 1998; 46 Bittencourt (b8) 2014; 53 Huang, Gao, Nix, Hutchinson (b34) 2000; 48 Han, Ma, Roters, Raabe (b33) 2007; 23 Han, Gao, Huang, Nix (b32) 2005; 53 Ma, Clarke (b46) 1995; 10 Gurtin, Needleman (b29) 2005; 53 Lebensohn (b41) 2001; 49 Gurtin (b26) 2002; 50 Gao, Huang, Nix, Hutchinson (b24) 1999; 47 Kuroda, Tvergaard (b40) 2008; 56 Niordson, Kysar (b54) 2014; 62 Petch (b56) 1953; 174 Bittencourt, Needleman, Gurtin, Van der Giessen (b9) 2003; 51 Ryś, Petryk (b58) 2018; 111 Cheong, Busso, Arsenlis (b11) 2005; 21 Fleck, Hutchinson (b16) 1993; 41 Michel, Moulinec, Suquet (b49) 2000; 1 Ma, Roters, Raabe (b47) 2006; 54 Gurtin (b25) 2000; 48 Armstrong (b3) 1961; 9 Gurtin, Anand (b28) 2005; 53 Chiricotto, Giacomelli, Tomassetti (b12) 2012; 72 Fleck, Muller, Ashby, Hutchinson (b21) 1994; 42 Han, Gao, Huang, Nix (b31) 2005; 53 Lebensohn, Brenner, Castelnau, Rollett (b42) 2008; 56 Motz, Schöberl, Pippan (b51) 2005; 53 Fleck, Hutchinson, Willis (b20) 2015; 82 Fleck, Willis (b22) 2015; 31 Berbenni, Taupin, Djaka, Fressengeas (b7) 2014; 51 Hall (b30) 1951; 64 Kiener, Motz, Grosinger, Weygand, Pippan (b38) 2010; 63 Fleck, Hutchinson (b17) 1997; 33 Asaro (b4) 1983; 50 Bargmann, Reddy (b6) 2011; 30 Dahlberg, Boåsen (b14) 2019; 112 Nye (b55) 1953; 1 Lebensohn, Kanjarla, Eisenlohr (b43) 2012; 32–33 Busso, Meissonnier, O’Dowd (b10) 2000; 48 Gurtin (b27) 2004; 52 Moulinec, Suquet (b52) 1994; 318 Chong, Yang, Lam, Tong (b13) 2001; 16 Lebensohn, Needleman (b45) 2016; 97 Antolovich, Armstrong (b2) 2014 Michel, Moulinec, Suquet (b50) 2001; 52 Fleck, Hutchinson (b18) 2001; 49 Fleck, Hutchinson, Willis (b19) 2014; 470 Lebensohn, Montagnat, Mansuy, Duval, Meysonnier, Philip (b44) 2009; 57 Reddy (b57) 2013; 93 Shell De Guzman, Neubauber, Flinn, Nix (b59) 1993; 308 Dunne, Rugg, Walker (b15) 2007; 23 Kuroda (b39) 2015; 58 Mayeur, McDowell (b48) 2014; 57 Acharya, Bassani (b1) 2000; 48 Idiart, Fleck (b37) 2009; 18 Petch (10.1016/j.jmps.2022.104906_b56) 1953; 174 Moulinec (10.1016/j.jmps.2022.104906_b52) 1994; 318 Motz (10.1016/j.jmps.2022.104906_b51) 2005; 53 Han (10.1016/j.jmps.2022.104906_b32) 2005; 53 Hutchinson (10.1016/j.jmps.2022.104906_b35) 1976; 348 Lebensohn (10.1016/j.jmps.2022.104906_b41) 2001; 49 Ma (10.1016/j.jmps.2022.104906_b46) 1995; 10 Gurtin (10.1016/j.jmps.2022.104906_b29) 2005; 53 Lebensohn (10.1016/j.jmps.2022.104906_b42) 2008; 56 Ryś (10.1016/j.jmps.2022.104906_b58) 2018; 111 Kuroda (10.1016/j.jmps.2022.104906_b39) 2015; 58 Kiener (10.1016/j.jmps.2022.104906_b38) 2010; 63 Michel (10.1016/j.jmps.2022.104906_b49) 2000; 1 Fleck (10.1016/j.jmps.2022.104906_b17) 1997; 33 Gurtin (10.1016/j.jmps.2022.104906_b26) 2002; 50 Cheong (10.1016/j.jmps.2022.104906_b11) 2005; 21 Busso (10.1016/j.jmps.2022.104906_b10) 2000; 48 Fleck (10.1016/j.jmps.2022.104906_b22) 2015; 31 Idiart (10.1016/j.jmps.2022.104906_b37) 2009; 18 Nye (10.1016/j.jmps.2022.104906_b55) 1953; 1 Kuroda (10.1016/j.jmps.2022.104906_b40) 2008; 56 Shell De Guzman (10.1016/j.jmps.2022.104906_b59) 1993; 308 Fleck (10.1016/j.jmps.2022.104906_b18) 2001; 49 Gurtin (10.1016/j.jmps.2022.104906_b28) 2005; 53 Lebensohn (10.1016/j.jmps.2022.104906_b44) 2009; 57 Asaro (10.1016/j.jmps.2022.104906_b4) 1983; 50 Mayeur (10.1016/j.jmps.2022.104906_b48) 2014; 57 Dunne (10.1016/j.jmps.2022.104906_b15) 2007; 23 Reddy (10.1016/j.jmps.2022.104906_b57) 2013; 93 Hall (10.1016/j.jmps.2022.104906_b30) 1951; 64 Moulinec (10.1016/j.jmps.2022.104906_b53) 1998; 157 Berbenni (10.1016/j.jmps.2022.104906_b7) 2014; 51 Bittencourt (10.1016/j.jmps.2022.104906_b9) 2003; 51 Gao (10.1016/j.jmps.2022.104906_b24) 1999; 47 Fleck (10.1016/j.jmps.2022.104906_b21) 1994; 42 Gurtin (10.1016/j.jmps.2022.104906_b25) 2000; 48 Bittencourt (10.1016/j.jmps.2022.104906_b8) 2014; 53 Hwang (10.1016/j.jmps.2022.104906_b36) 2004; 20 Bargmann (10.1016/j.jmps.2022.104906_b6) 2011; 30 Lebensohn (10.1016/j.jmps.2022.104906_b45) 2016; 97 Dahlberg (10.1016/j.jmps.2022.104906_b14) 2019; 112 Michel (10.1016/j.jmps.2022.104906_b50) 2001; 52 Niordson (10.1016/j.jmps.2022.104906_b54) 2014; 62 Stölken (10.1016/j.jmps.2022.104906_b60) 1998; 46 Han (10.1016/j.jmps.2022.104906_b31) 2005; 53 Lebensohn (10.1016/j.jmps.2022.104906_b43) 2012; 32–33 Ashby (10.1016/j.jmps.2022.104906_b5) 1970; 21 Chong (10.1016/j.jmps.2022.104906_b13) 2001; 16 Ma (10.1016/j.jmps.2022.104906_b47) 2006; 54 Acharya (10.1016/j.jmps.2022.104906_b1) 2000; 48 Fleck (10.1016/j.jmps.2022.104906_b16) 1993; 41 Han (10.1016/j.jmps.2022.104906_b33) 2007; 23 Gurtin (10.1016/j.jmps.2022.104906_b27) 2004; 52 Chiricotto (10.1016/j.jmps.2022.104906_b12) 2012; 72 Antolovich (10.1016/j.jmps.2022.104906_b2) 2014 Armstrong (10.1016/j.jmps.2022.104906_b3) 1961; 9 Fleck (10.1016/j.jmps.2022.104906_b19) 2014; 470 Fleck (10.1016/j.jmps.2022.104906_b20) 2015; 82 Forest (10.1016/j.jmps.2022.104906_b23) 2008; 88 Huang (10.1016/j.jmps.2022.104906_b34) 2000; 48 |
| References_xml | – volume: 9 start-page: 196 year: 1961 end-page: 199 ident: b3 article-title: On size effects in polycrystal plasticity publication-title: J. Mech. Phys. Solids – volume: 52 start-page: 2545 year: 2004 end-page: 2568 ident: b27 article-title: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin publication-title: J. Mech. Phys. Solids – volume: 157 start-page: 69 year: 1998 end-page: 94 ident: b53 article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 51 start-page: 281 year: 2003 end-page: 310 ident: b9 article-title: A comparison of nonlocal continuum and discrete dislocation plasticity predictions publication-title: J. Mech. Phys. Solids – volume: 30 start-page: 719 year: 2011 end-page: 730 ident: b6 article-title: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses publication-title: Eur. J. Mech. A/Solids – volume: 53 start-page: 1 year: 2014 end-page: 16 ident: b8 article-title: Dynamic explicit solution for higher-order crystal plasticity theories publication-title: Int. J. Plast. – volume: 16 start-page: 1052 year: 2001 end-page: 1058 ident: b13 article-title: Torsion and bending of micron-scaled structures publication-title: J. Mater. Res. – volume: 56 start-page: 3914 year: 2008 end-page: 3926 ident: b42 article-title: Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper publication-title: Acta Mater. – volume: 53 start-page: 1204 year: 2005 end-page: 1222 ident: b32 article-title: Mechanism-based strain gradient crystal plasticity—II. Analysis publication-title: J. Mech. Phys. Solids – volume: 1 start-page: 79 year: 2000 end-page: 88 ident: b49 article-title: A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast publication-title: CMES - Comput. Model. Eng. Sci. – volume: 23 start-page: 690 year: 2007 end-page: 710 ident: b33 article-title: A finite element approach with patch projection for strain gradient plasticity formulations publication-title: Int. J. Plast. – volume: 10 start-page: 853 year: 1995 end-page: 863 ident: b46 article-title: Size dependent hardness of silver single crystals publication-title: J. Mater. Res. – volume: 41 start-page: 1825 year: 1993 end-page: 1857 ident: b16 article-title: A phenomenological theory for strain gradient effects in plasticity publication-title: J. Mech. Phys. Solids – volume: 49 start-page: 2723 year: 2001 end-page: 2737 ident: b41 article-title: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform publication-title: Acta Mater. – volume: 470 year: 2014 ident: b19 article-title: Strain gradient plasticity under non-proportional loading publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 47 start-page: 1239 year: 1999 end-page: 1263 ident: b24 article-title: Mechanism-based strain gradient plasticity - I. Theory publication-title: J. Mech. Phys. Solids – volume: 58 start-page: 62 year: 2015 end-page: 72 ident: b39 article-title: A higher-order strain gradient plasticity theory with a corner-like effect publication-title: Int. J. Solids Struct. – volume: 48 start-page: 989 year: 2000 end-page: 1036 ident: b25 article-title: On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients publication-title: J. Mech. Phys. Solids – volume: 53 start-page: 1188 year: 2005 end-page: 1203 ident: b31 article-title: Mechanism-based strain gradient crystal plasticity—I. Theory publication-title: J. Mech. Phys. Solids – volume: 20 start-page: 831 year: 2004 end-page: 839 ident: b36 article-title: The finite deformation theory of Taylor-based nonlocal plasticity publication-title: Int. J. Plast. – volume: 54 start-page: 2169 year: 2006 end-page: 2179 ident: b47 article-title: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations publication-title: Acta Mater. – volume: 50 start-page: 921 year: 1983 end-page: 934 ident: b4 article-title: Crystal plasticity publication-title: J. Appl. Mech. – volume: 21 start-page: 399 year: 1970 end-page: 424 ident: b5 article-title: The deformation of plastically non-homogeneous materials publication-title: Phil. Mag. – volume: 52 start-page: 139 year: 2001 end-page: 160 ident: b50 article-title: A computational scheme for linear and non-linear composites with arbitrary phase contrast publication-title: Internat. J. Numer. Methods Engrg. – volume: 318 start-page: 1417 year: 1994 end-page: 1423 ident: b52 article-title: A fast numerical method for computing the linear and nonlinear mechanical properties of composites publication-title: C. R. Acad. Sci. Paris – volume: 63 start-page: 500 year: 2010 end-page: 503 ident: b38 article-title: Cyclic response of copper single crystal micro-beams publication-title: Scr. Mater. – volume: 56 start-page: 1591 year: 2008 end-page: 1608 ident: b40 article-title: On the formulations of higher-order strain gradient crystal plasticity models publication-title: J. Mech. Phys. Solids – volume: 97 start-page: 333 year: 2016 end-page: 351 ident: b45 article-title: Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms publication-title: J. Mech. Phys. Solids – volume: 308 start-page: 613 year: 1993 end-page: 618 ident: b59 article-title: Role of indentation depth on the measured hardness of materials publication-title: Materials Research Society Symposium - Proceedings – volume: 57 start-page: 1405 year: 2009 end-page: 1415 ident: b44 article-title: Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals publication-title: Acta Mater. – volume: 32–33 start-page: 59 year: 2012 end-page: 69 ident: b43 article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials publication-title: Int. J. Plast. – volume: 48 start-page: 99 year: 2000 end-page: 128 ident: b34 article-title: Mechanism-based strain gradient plasticity–II. Analysis publication-title: J. Mech. Phys. Solids – volume: 174 start-page: 25 year: 1953 end-page: 28 ident: b56 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 48 start-page: 2333 year: 2000 end-page: 2361 ident: b10 article-title: Gradient-dependent deformation of two-phase single crystals publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 1565 year: 2000 end-page: 1595 ident: b1 article-title: Lattice incompatibility and a gradient theory of crystal plasticity publication-title: J. Mech. Phys. Solids – volume: 18 year: 2009 ident: b37 article-title: Size effects in the torsion of thin metal wires publication-title: Modelling Simulation Mater. Sci. Eng. – volume: 51 start-page: 4157 year: 2014 end-page: 4175 ident: b7 article-title: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics publication-title: Int. J. Solids Struct. – volume: 49 start-page: 2245 year: 2001 end-page: 2271 ident: b18 article-title: A reformulation of strain gradient plasticity publication-title: J. Mech. Phys. Solids – volume: 88 start-page: 3549 year: 2008 end-page: 3563 ident: b23 article-title: Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations publication-title: Phil. Mag. – volume: 50 start-page: 5 year: 2002 end-page: 32 ident: b26 article-title: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations publication-title: J. Mech. Phys. Solids – volume: 112 start-page: 220 year: 2019 end-page: 241 ident: b14 article-title: Evolution of the length scale in strain gradient plasticity publication-title: Int. J. Plast. – volume: 348 start-page: 101 year: 1976 end-page: 127 ident: b35 article-title: Bounds and self-consistent estimates for creep of polycrystalline materials publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 72 start-page: 1169 year: 2012 end-page: 1191 ident: b12 article-title: Torsion in strain-gradient plasticity: Energetic scale effects publication-title: http://dx.doi.org/10.1137/120863034 – volume: 31 start-page: 465 year: 2015 end-page: 472 ident: b22 article-title: Strain gradient plasticity: energetic or dissipative? publication-title: Acta Mech. Sinica – volume: 64 start-page: 747 year: 1951 end-page: 753 ident: b30 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proceedings of the Physical Society. Section B – volume: 33 start-page: 295 year: 1997 end-page: 361 ident: b17 article-title: Strain gradient plasticity publication-title: Adv. Appl. Mech. – volume: 111 start-page: 168 year: 2018 end-page: 187 ident: b58 article-title: Gradient crystal plasticity models with a natural length scale in the hardening law publication-title: Int. J. Plast. – year: 2014 ident: b2 article-title: Plastic strain localization in metals: Origins and consequences publication-title: Prog. Mater. Sci. – volume: 53 start-page: 1624 year: 2005 end-page: 1649 ident: b28 article-title: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations publication-title: J. Mech. Phys. Solids – volume: 93 start-page: 844 year: 2013 end-page: 867 ident: b57 article-title: Some theoretical and computational aspects of single-crystal strain-gradient plasticity publication-title: ZAMM Z. Angew. Math. Mech. – volume: 82 year: 2015 ident: b20 article-title: Guidelines for constructing strain gradient plasticity theories publication-title: J. Appl. Mech. Trans. ASME – volume: 42 start-page: 475 year: 1994 end-page: 487 ident: b21 article-title: Strain gradient plasticity: Theory and experiment publication-title: Acta Metall. Mater. – volume: 62 start-page: 31 year: 2014 end-page: 47 ident: b54 article-title: Computational strain gradient crystal plasticity publication-title: J. Mech. Phys. Solids – volume: 53 start-page: 1 year: 2005 end-page: 31 ident: b29 article-title: Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector publication-title: J. Mech. Phys. Solids – volume: 46 start-page: 5109 year: 1998 end-page: 5115 ident: b60 article-title: A microbend test method for measuring the plasticity length scale publication-title: Acta Mater. – volume: 23 start-page: 1061 year: 2007 end-page: 1083 ident: b15 article-title: Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys publication-title: Int. J. Plast. – volume: 57 start-page: 29 year: 2014 end-page: 51 ident: b48 article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity publication-title: Int. J. Plast. – volume: 21 start-page: 1797 year: 2005 end-page: 1814 ident: b11 article-title: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts publication-title: Int. J. Plast. – volume: 53 start-page: 4269 year: 2005 end-page: 4279 ident: b51 article-title: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique publication-title: Acta Mater. – volume: 1 start-page: 153 year: 1953 end-page: 162 ident: b55 article-title: Some geometrical relations in dislocated crystals publication-title: Acta Metall. – volume: 20 start-page: 831 issue: 4–5 year: 2004 ident: 10.1016/j.jmps.2022.104906_b36 article-title: The finite deformation theory of Taylor-based nonlocal plasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2003.08.001 – volume: 9 start-page: 196 issue: 3 year: 1961 ident: 10.1016/j.jmps.2022.104906_b3 article-title: On size effects in polycrystal plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(61)90018-7 – volume: 51 start-page: 281 issue: 2 year: 2003 ident: 10.1016/j.jmps.2022.104906_b9 article-title: A comparison of nonlocal continuum and discrete dislocation plasticity predictions publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(02)00081-9 – volume: 93 start-page: 844 issue: 12 year: 2013 ident: 10.1016/j.jmps.2022.104906_b57 article-title: Some theoretical and computational aspects of single-crystal strain-gradient plasticity publication-title: ZAMM Z. Angew. Math. Mech. doi: 10.1002/zamm.201200101 – volume: 58 start-page: 62 year: 2015 ident: 10.1016/j.jmps.2022.104906_b39 article-title: A higher-order strain gradient plasticity theory with a corner-like effect publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.12.019 – volume: 54 start-page: 2169 issue: 8 year: 2006 ident: 10.1016/j.jmps.2022.104906_b47 article-title: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.01.005 – volume: 49 start-page: 2245 issue: 10 year: 2001 ident: 10.1016/j.jmps.2022.104906_b18 article-title: A reformulation of strain gradient plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00049-7 – volume: 56 start-page: 1591 issue: 4 year: 2008 ident: 10.1016/j.jmps.2022.104906_b40 article-title: On the formulations of higher-order strain gradient crystal plasticity models publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2007.07.015 – volume: 10 start-page: 853 issue: 4 year: 1995 ident: 10.1016/j.jmps.2022.104906_b46 article-title: Size dependent hardness of silver single crystals publication-title: J. Mater. Res. doi: 10.1557/JMR.1995.0853 – volume: 49 start-page: 2723 issue: 14 year: 2001 ident: 10.1016/j.jmps.2022.104906_b41 article-title: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00172-0 – volume: 88 start-page: 3549 issue: 30–32 year: 2008 ident: 10.1016/j.jmps.2022.104906_b23 article-title: Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations publication-title: Phil. Mag. doi: 10.1080/14786430802154815 – volume: 48 start-page: 989 issue: 5 year: 2000 ident: 10.1016/j.jmps.2022.104906_b25 article-title: On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00059-9 – volume: 318 start-page: 1417 issue: II year: 1994 ident: 10.1016/j.jmps.2022.104906_b52 article-title: A fast numerical method for computing the linear and nonlinear mechanical properties of composites publication-title: C. R. Acad. Sci. Paris – volume: 21 start-page: 1797 issue: 9 year: 2005 ident: 10.1016/j.jmps.2022.104906_b11 article-title: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2004.11.001 – volume: 63 start-page: 500 issue: 5 year: 2010 ident: 10.1016/j.jmps.2022.104906_b38 article-title: Cyclic response of copper single crystal micro-beams publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.05.014 – volume: 42 start-page: 475 issue: 2 year: 1994 ident: 10.1016/j.jmps.2022.104906_b21 article-title: Strain gradient plasticity: Theory and experiment publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90502-9 – volume: 53 start-page: 1204 issue: 5 year: 2005 ident: 10.1016/j.jmps.2022.104906_b32 article-title: Mechanism-based strain gradient crystal plasticity—II. Analysis publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2005.01.004 – volume: 57 start-page: 1405 issue: 5 year: 2009 ident: 10.1016/j.jmps.2022.104906_b44 article-title: Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.10.057 – volume: 46 start-page: 5109 issue: 14 year: 1998 ident: 10.1016/j.jmps.2022.104906_b60 article-title: A microbend test method for measuring the plasticity length scale publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00153-0 – volume: 21 start-page: 399 issue: 170 year: 1970 ident: 10.1016/j.jmps.2022.104906_b5 article-title: The deformation of plastically non-homogeneous materials publication-title: Phil. Mag. doi: 10.1080/14786437008238426 – volume: 48 start-page: 2333 issue: 11 year: 2000 ident: 10.1016/j.jmps.2022.104906_b10 article-title: Gradient-dependent deformation of two-phase single crystals publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(00)00006-5 – volume: 52 start-page: 2545 issue: 11 year: 2004 ident: 10.1016/j.jmps.2022.104906_b27 article-title: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.04.010 – volume: 33 start-page: 295 year: 1997 ident: 10.1016/j.jmps.2022.104906_b17 article-title: Strain gradient plasticity publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70388-0 – volume: 56 start-page: 3914 issue: 15 year: 2008 ident: 10.1016/j.jmps.2022.104906_b42 article-title: Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.04.016 – volume: 53 start-page: 1188 issue: 5 year: 2005 ident: 10.1016/j.jmps.2022.104906_b31 article-title: Mechanism-based strain gradient crystal plasticity—I. Theory publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.08.008 – volume: 57 start-page: 29 year: 2014 ident: 10.1016/j.jmps.2022.104906_b48 article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.01.010 – volume: 23 start-page: 1061 issue: 6 year: 2007 ident: 10.1016/j.jmps.2022.104906_b15 article-title: Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2006.10.013 – volume: 47 start-page: 1239 issue: 6 year: 1999 ident: 10.1016/j.jmps.2022.104906_b24 article-title: Mechanism-based strain gradient plasticity - I. Theory publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00103-3 – volume: 53 start-page: 1 year: 2014 ident: 10.1016/j.jmps.2022.104906_b8 article-title: Dynamic explicit solution for higher-order crystal plasticity theories publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.06.010 – volume: 72 start-page: 1169 issue: 4 year: 2012 ident: 10.1016/j.jmps.2022.104906_b12 article-title: Torsion in strain-gradient plasticity: Energetic scale effects publication-title: http://dx.doi.org/10.1137/120863034 – volume: 53 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.jmps.2022.104906_b29 article-title: Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.06.006 – volume: 52 start-page: 139 issue: 12 year: 2001 ident: 10.1016/j.jmps.2022.104906_b50 article-title: A computational scheme for linear and non-linear composites with arbitrary phase contrast publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.275 – volume: 64 start-page: 747 issue: 9 year: 1951 ident: 10.1016/j.jmps.2022.104906_b30 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proceedings of the Physical Society. Section B doi: 10.1088/0370-1301/64/9/303 – volume: 82 issue: 7 year: 2015 ident: 10.1016/j.jmps.2022.104906_b20 article-title: Guidelines for constructing strain gradient plasticity theories publication-title: J. Appl. Mech. Trans. ASME doi: 10.1115/1.4030323 – volume: 157 start-page: 69 issue: 1–2 year: 1998 ident: 10.1016/j.jmps.2022.104906_b53 article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(97)00218-1 – volume: 23 start-page: 690 issue: 4 year: 2007 ident: 10.1016/j.jmps.2022.104906_b33 article-title: A finite element approach with patch projection for strain gradient plasticity formulations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2006.08.003 – volume: 18 issue: 1 year: 2009 ident: 10.1016/j.jmps.2022.104906_b37 article-title: Size effects in the torsion of thin metal wires publication-title: Modelling Simulation Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015009 – volume: 470 issue: 2170 year: 2014 ident: 10.1016/j.jmps.2022.104906_b19 article-title: Strain gradient plasticity under non-proportional loading publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 53 start-page: 4269 issue: 15 year: 2005 ident: 10.1016/j.jmps.2022.104906_b51 article-title: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.036 – volume: 1 start-page: 153 issue: 2 year: 1953 ident: 10.1016/j.jmps.2022.104906_b55 article-title: Some geometrical relations in dislocated crystals publication-title: Acta Metall. doi: 10.1016/0001-6160(53)90054-6 – volume: 48 start-page: 1565 issue: 8 year: 2000 ident: 10.1016/j.jmps.2022.104906_b1 article-title: Lattice incompatibility and a gradient theory of crystal plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00075-7 – year: 2014 ident: 10.1016/j.jmps.2022.104906_b2 article-title: Plastic strain localization in metals: Origins and consequences publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.06.001 – volume: 112 start-page: 220 year: 2019 ident: 10.1016/j.jmps.2022.104906_b14 article-title: Evolution of the length scale in strain gradient plasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.08.016 – volume: 348 start-page: 101 issue: 1652 year: 1976 ident: 10.1016/j.jmps.2022.104906_b35 article-title: Bounds and self-consistent estimates for creep of polycrystalline materials publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci. – volume: 97 start-page: 333 issue: SI year: 2016 ident: 10.1016/j.jmps.2022.104906_b45 article-title: Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2016.03.023 – volume: 31 start-page: 465 issue: 4 year: 2015 ident: 10.1016/j.jmps.2022.104906_b22 article-title: Strain gradient plasticity: energetic or dissipative? publication-title: Acta Mech. Sinica doi: 10.1007/s10409-015-0468-8 – volume: 41 start-page: 1825 issue: 12 year: 1993 ident: 10.1016/j.jmps.2022.104906_b16 article-title: A phenomenological theory for strain gradient effects in plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(93)90072-N – volume: 53 start-page: 1624 issue: 7 year: 2005 ident: 10.1016/j.jmps.2022.104906_b28 article-title: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2004.12.008 – volume: 1 start-page: 79 issue: 2 year: 2000 ident: 10.1016/j.jmps.2022.104906_b49 article-title: A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast publication-title: CMES - Comput. Model. Eng. Sci. – volume: 30 start-page: 719 issue: 5 year: 2011 ident: 10.1016/j.jmps.2022.104906_b6 article-title: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses publication-title: Eur. J. Mech. A/Solids doi: 10.1016/j.euromechsol.2011.04.006 – volume: 50 start-page: 5 issue: 1 year: 2002 ident: 10.1016/j.jmps.2022.104906_b26 article-title: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00104-1 – volume: 48 start-page: 99 year: 2000 ident: 10.1016/j.jmps.2022.104906_b34 article-title: Mechanism-based strain gradient plasticity–II. Analysis publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00022-8 – volume: 32–33 start-page: 59 year: 2012 ident: 10.1016/j.jmps.2022.104906_b43 article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.12.005 – volume: 174 start-page: 25 year: 1953 ident: 10.1016/j.jmps.2022.104906_b56 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 111 start-page: 168 year: 2018 ident: 10.1016/j.jmps.2022.104906_b58 article-title: Gradient crystal plasticity models with a natural length scale in the hardening law publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.07.015 – volume: 50 start-page: 921 issue: 4b year: 1983 ident: 10.1016/j.jmps.2022.104906_b4 article-title: Crystal plasticity publication-title: J. Appl. Mech. doi: 10.1115/1.3167205 – volume: 62 start-page: 31 issue: 1 year: 2014 ident: 10.1016/j.jmps.2022.104906_b54 article-title: Computational strain gradient crystal plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2013.08.014 – volume: 308 start-page: 613 year: 1993 ident: 10.1016/j.jmps.2022.104906_b59 article-title: Role of indentation depth on the measured hardness of materials – volume: 51 start-page: 4157 issue: 23–24 year: 2014 ident: 10.1016/j.jmps.2022.104906_b7 article-title: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.08.009 – volume: 16 start-page: 1052 issue: 4 year: 2001 ident: 10.1016/j.jmps.2022.104906_b13 article-title: Torsion and bending of micron-scaled structures publication-title: J. Mater. Res. doi: 10.1557/JMR.2001.0146 |
| SSID | ssj0005071 |
| Score | 2.4243844 |
| Snippet | Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary... in this report strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104906 |
| SubjectTerms | A. Dislocations B. Crystal plasticity B. Elastic-viscoplastic material Bauschinger effect C. Numerical algorithms crystal plasticity Cyclic loads dislocations elastic-viscoplastic material Face centered cubic lattice Fast Fourier transformations Fourier transforms Hardening rate MATERIALS SCIENCE Mechanical properties numerical algorithms Origins Plastic properties Polycrystals Slip Strain Strain-gradient plasticity |
| Title | Study of the interplay between lower-order and higher-order energetic strain-gradient effects in polycrystal plasticity |
| URI | https://dx.doi.org/10.1016/j.jmps.2022.104906 https://www.proquest.com/docview/2691513439 https://www.osti.gov/servlets/purl/1865036 |
| Volume | 164 |
| WOSCitedRecordID | wos000799849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVKxwEOiJ9at4F84FalSpM4sY8FDdgOExJD6i2yHZu1ypKqa8d62r_O9yVOGjpRwYFLVKWx0-Y9x5_t9z0T8l5pbjObKS9RUnuRimJPJJJ52mZBppm0SvnVZhPJxQWfTsXXXu--yYW5zZOi4Hd3YvFfoYZzADamzv4D3G2lcAI-A-hwBNjh-FfAf2tsojGknFWawlxuWkFWjtuieZXjZrVwcFUJPdwJ9KDGvDONOSRyVng_lpUkbNXqPlB0XuYbvdzcYBolVI1Gz7PVb6vDnSgXf8S1wfTixg66nkupFCTwIGZZG9Q7n4OsXOflulEtDj-PtpohBWPu8qoxBABul8NJ-_UHA6OH3O3deYZOncPzUXdSI9gKYN1MmwsLum9uHDT79e637Zu7NkB_0AvUExLz0fx6gY7sQYAr2cLfsdyux0AcQtQwfkQOgoQJ3icHk7PT6flWJeQn48ZwHm_v8q5qieBu_X-KbfolQPGgs68imMvn5JkDhU5qyrwgPVO8JE87hpSvyM-KPLS0FHCjLXmoIw_tkIcClrRLHtqSh-6QhzryQIW0Qx66Jc9r8v3T6eXHL57bmsPTENGuPBEaDo1cSm6EYtnYRoyphLFYWx1awzVn0M6jkEsdRVJx6EXxUukrZSE6UOEb0i_KwhwSygTTXMI4NzRJJLKIi8gIbY0fGx5wZQdk3DzUVDvfevwXedoIFOcpApEiEGkNxIAM2zKL2rVl79WswSp1cWcdT6ZAqL3ljhFYLIOGyxqVaVDIUWpAThq8U_d6gNKxgBA7hFHA0d7Cx-TJtlmckP5quTZvyWN9u5rdLN85kv4CNAq-gA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+the+interplay+between+lower-order+and+higher-order+energetic+strain-gradient+effects+in+polycrystal+plasticity&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Christodoulou%2C+Paul+G.&rft.au=Lebensohn%2C+Ricardo+A.&rft.au=Beyerlein%2C+Irene+J.&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=0022-5096&rft.volume=164&rft_id=info:doi/10.1016%2Fj.jmps.2022.104906&rft.externalDocID=1865036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon |