A sublinear-time randomized approximation algorithm for matrix games

This paper presents a parallel randomized algorithm which computes a pair of ε-optimal strategies for a given ( m, n)-matrix game A = [ a ij ] ϵ [−1, 1] in O( ε −2log 2( n+ m)) expected time on an ( n+ m)/log( n+ m)-processor EREW PRAM. For any fixed accuracy ϵ > 0, the expected sequential runnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 18; číslo 2; s. 53 - 58
Hlavní autoři: Grigoriadis, Michael D., Khachiyan, Leonid G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.09.1995
Elsevier
Témata:
ISSN:0167-6377, 1872-7468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a parallel randomized algorithm which computes a pair of ε-optimal strategies for a given ( m, n)-matrix game A = [ a ij ] ϵ [−1, 1] in O( ε −2log 2( n+ m)) expected time on an ( n+ m)/log( n+ m)-processor EREW PRAM. For any fixed accuracy ϵ > 0, the expected sequential running time of the suggested algorithm is O(( n + m)log( n + m)), which is sublinear in mn, the number of input elements of A. On the other hand, simple arguments are given to show that for ε < 1 2 , any deterministic algorithm for computing a pair of ε-optimal strategies of an ( m, n)-matrix game A with ± 1 elements examines Ω(mn) of its elements. In particular, for m = n the randomized algorithm achieves an almost quadratic expected speedup relative to any deterministic method.
ISSN:0167-6377
1872-7468
DOI:10.1016/0167-6377(95)00032-0