Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris
•There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidativ...
Saved in:
| Published in: | Aquatic toxicology Vol. 216; p. 105319 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.11.2019
|
| Subjects: | |
| ISSN: | 0166-445X, 1879-1514, 1879-1514 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidative stress.•The interaction of microplastics and copper alleviates the negative effect of single microplastics and copper to microalgae.
Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L). |
|---|---|
| AbstractList | •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidative stress.•The interaction of microplastics and copper alleviates the negative effect of single microplastics and copper to microalgae.
Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L). Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L). Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L). |
| ArticleNumber | 105319 |
| Author | Zhang, Qiongjie Fu, Dongdong Fan, Zhengquan Wang, Zezheng Peng, Licheng Qi, Huaiyuan |
| Author_xml | – sequence: 1 givenname: Dongdong surname: Fu fullname: Fu, Dongdong – sequence: 2 givenname: Qiongjie surname: Zhang fullname: Zhang, Qiongjie – sequence: 3 givenname: Zhengquan surname: Fan fullname: Fan, Zhengquan – sequence: 4 givenname: Huaiyuan surname: Qi fullname: Qi, Huaiyuan – sequence: 5 givenname: Zezheng surname: Wang fullname: Wang, Zezheng – sequence: 6 givenname: Licheng surname: Peng fullname: Peng, Licheng email: lcpeng@hainanu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31586885$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFrGzEQhUVJaZy0P6FFx17WXWklW0sPJZg2KQRyaSA3MSuNExl5tZG0Tkz_fGXWufSSzEUwfO-NeO-MnPShR0I-s3rOarb4tpnD4wg5PM95zdqykw1r35EZU8u2YpKJEzIr3KISQt6dkrOUNnUZLtoP5LRhUi2UkjPy9-IeLd06E8PgIWVnEh2C3-9cv_fUPPgQnUXq-owRTKZPLj9QE4YBI4XeUgNjQhqenYXsdkhTjpgSzeEJok2TMfh7QLo6eKH3QHdjWUSXPpL3a_AJPx3fc3L76-ef1VV1fXP5e3VxXZmmVbnqJPKu5goFMGWhk4uutQ1gIxQumWw6VXcKoFUCzbJmTAgLuGxN2wE3a2mbc_J18h1ieBwxZb11yRy-0mMYk-aN5ILzRvA3oDVTSnGuCvrliI7dFq0eottC3OuXbAvwfQJKBClFXGvjckkp9DmC85rV-tCk3uhjk_rQpJ6aLGr5n_rlwGu6H5MOS6I7h1En47A3aF1Ek7UN7hWHf2aOvpU |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118246 crossref_primary_10_1016_j_resconrec_2024_107732 crossref_primary_10_1007_s13201_025_02443_z crossref_primary_10_1007_s00253_020_10704_x crossref_primary_10_1016_j_gr_2021_07_029 crossref_primary_10_1016_j_scitotenv_2024_170591 crossref_primary_10_1016_j_scitotenv_2024_169926 crossref_primary_10_1111_raq_12941 crossref_primary_10_1016_j_biortech_2020_122860 crossref_primary_10_1016_j_envpol_2022_119106 crossref_primary_10_1016_j_chemosphere_2022_136599 crossref_primary_10_1016_j_envpol_2024_124805 crossref_primary_10_1016_j_envc_2025_101080 crossref_primary_10_3390_su142114338 crossref_primary_10_3389_fmars_2022_1021170 crossref_primary_10_1016_j_jhazmat_2020_124187 crossref_primary_10_1016_j_scitotenv_2021_147065 crossref_primary_10_1016_j_scitotenv_2021_147620 crossref_primary_10_1016_j_scitotenv_2024_170366 crossref_primary_10_1016_j_envpol_2024_124028 crossref_primary_10_3390_w14152422 crossref_primary_10_1080_02772248_2025_2515399 crossref_primary_10_1016_j_aquatox_2022_106097 crossref_primary_10_3390_su142214761 crossref_primary_10_1016_j_jhazmat_2020_123092 crossref_primary_10_1039_D5EN00310E crossref_primary_10_1016_j_scitotenv_2024_175227 crossref_primary_10_3389_fmars_2021_779321 crossref_primary_10_2166_wst_2024_151 crossref_primary_10_1016_j_scitotenv_2023_168414 crossref_primary_10_1016_j_aquatox_2020_105650 crossref_primary_10_1007_s10661_025_13636_z crossref_primary_10_1016_j_wroa_2025_100392 crossref_primary_10_1016_j_heliyon_2021_e07676 crossref_primary_10_1016_j_psep_2025_107532 crossref_primary_10_1016_j_jhazmat_2024_135652 crossref_primary_10_1016_j_algal_2022_102835 crossref_primary_10_1007_s10924_020_01929_y crossref_primary_10_3389_fmars_2023_1234225 crossref_primary_10_1016_j_envpol_2021_118636 crossref_primary_10_1007_s11356_022_22897_x crossref_primary_10_1016_j_aquatox_2022_106309 crossref_primary_10_1016_j_scitotenv_2024_170460 crossref_primary_10_1016_j_jclepro_2025_145842 crossref_primary_10_1016_j_watres_2024_121706 crossref_primary_10_1016_j_jhazmat_2021_127937 crossref_primary_10_1080_09593330_2021_1950841 crossref_primary_10_1016_j_scitotenv_2020_142572 crossref_primary_10_1016_j_watres_2020_116476 crossref_primary_10_1007_s10311_024_01730_6 crossref_primary_10_1016_j_ecoenv_2021_112243 crossref_primary_10_1016_j_scitotenv_2021_151750 crossref_primary_10_1007_s10311_021_01370_0 crossref_primary_10_3390_w17020201 crossref_primary_10_1007_s11356_022_21569_0 crossref_primary_10_1016_j_envpol_2023_123127 crossref_primary_10_1016_j_chemosphere_2024_143120 crossref_primary_10_1016_j_chemosphere_2022_134530 crossref_primary_10_1016_j_envres_2022_112734 crossref_primary_10_1016_j_trac_2024_117611 crossref_primary_10_1016_j_scitotenv_2023_164312 crossref_primary_10_1016_j_envpol_2024_124604 crossref_primary_10_1016_j_envpol_2022_120925 crossref_primary_10_1007_s40726_024_00298_7 crossref_primary_10_1016_j_tplants_2022_06_005 crossref_primary_10_3389_fimmu_2025_1528502 crossref_primary_10_1016_j_scitotenv_2021_151642 crossref_primary_10_1007_s11356_021_13907_5 crossref_primary_10_3390_toxics8020040 crossref_primary_10_3390_su16031107 crossref_primary_10_1007_s40242_023_3052_y crossref_primary_10_1016_j_marpolbul_2020_110963 crossref_primary_10_1016_j_chemosphere_2022_136720 crossref_primary_10_1016_j_scitotenv_2023_167017 crossref_primary_10_1016_j_jhazmat_2022_130137 crossref_primary_10_1016_j_jconhyd_2024_104396 crossref_primary_10_1007_s00343_025_5078_0 crossref_primary_10_1016_j_jenvman_2023_118982 crossref_primary_10_1016_j_watres_2022_118780 crossref_primary_10_3390_w17020229 crossref_primary_10_3390_toxics12090676 crossref_primary_10_3390_ijms242417219 crossref_primary_10_1016_j_envpol_2023_121643 crossref_primary_10_1016_j_scitotenv_2020_140479 crossref_primary_10_1016_j_chemosphere_2023_141001 crossref_primary_10_1016_j_watres_2021_117011 crossref_primary_10_1016_j_envint_2024_108633 crossref_primary_10_1016_j_marenvres_2024_106343 crossref_primary_10_1007_s00128_025_04087_w crossref_primary_10_1016_j_scitotenv_2023_167129 crossref_primary_10_1007_s10311_020_01044_3 crossref_primary_10_1016_j_aquatox_2023_106669 crossref_primary_10_1007_s11356_021_12983_x crossref_primary_10_1016_j_scitotenv_2024_172308 crossref_primary_10_1016_j_jenvman_2024_122713 crossref_primary_10_1016_j_jtice_2024_105504 crossref_primary_10_1016_j_marpolbul_2021_113197 crossref_primary_10_1016_j_watres_2024_123008 crossref_primary_10_1016_j_envpol_2024_124084 crossref_primary_10_1016_j_scitotenv_2023_169659 crossref_primary_10_1016_j_scitotenv_2023_165607 crossref_primary_10_1016_j_scitotenv_2021_152070 crossref_primary_10_1007_s11356_024_33084_5 crossref_primary_10_1016_j_marpolbul_2022_113809 crossref_primary_10_1016_j_aquatox_2022_106234 crossref_primary_10_1016_j_jhazmat_2021_126482 crossref_primary_10_1016_j_scitotenv_2023_166140 crossref_primary_10_1016_j_ecss_2020_106757 crossref_primary_10_1016_j_scitotenv_2023_168399 crossref_primary_10_1016_j_scitotenv_2022_154266 crossref_primary_10_1007_s10452_021_09834_9 crossref_primary_10_1016_j_envres_2025_121128 crossref_primary_10_3389_fmars_2025_1519668 crossref_primary_10_1016_j_jhazmat_2021_126915 crossref_primary_10_1016_j_aquatox_2024_107211 crossref_primary_10_1016_j_envpol_2022_119626 crossref_primary_10_1016_j_jhazmat_2022_130463 crossref_primary_10_1186_s12870_024_05661_w crossref_primary_10_1016_j_chemosphere_2023_138776 crossref_primary_10_1016_j_scitotenv_2024_173218 crossref_primary_10_1016_j_scitotenv_2023_162291 crossref_primary_10_1016_j_jclepro_2022_131454 crossref_primary_10_1007_s11356_021_17545_9 crossref_primary_10_3390_agronomy15082013 crossref_primary_10_1007_s00343_025_4175_4 crossref_primary_10_1016_j_ecoenv_2022_114102 crossref_primary_10_3389_fmicb_2022_865768 crossref_primary_10_1016_j_aquatox_2023_106638 crossref_primary_10_1016_j_jes_2023_12_017 crossref_primary_10_1016_j_aquatox_2024_106938 crossref_primary_10_1016_j_jhazmat_2020_124460 crossref_primary_10_1016_j_gr_2021_10_025 crossref_primary_10_1007_s11270_023_06642_9 crossref_primary_10_1016_j_trac_2023_117192 crossref_primary_10_1016_j_scitotenv_2024_176151 crossref_primary_10_1002_smll_202005834 crossref_primary_10_1016_j_scitotenv_2023_162950 crossref_primary_10_1007_s10661_024_13010_5 crossref_primary_10_3390_environments12060175 crossref_primary_10_1016_j_scitotenv_2022_156593 crossref_primary_10_1016_j_rsma_2023_103073 crossref_primary_10_1016_j_heliyon_2024_e32881 crossref_primary_10_1016_j_jhazmat_2022_129686 crossref_primary_10_1016_j_scitotenv_2024_171937 crossref_primary_10_1016_j_watres_2023_119717 crossref_primary_10_1007_s10646_025_02940_6 crossref_primary_10_1111_brv_13164 crossref_primary_10_1016_j_gr_2021_12_002 crossref_primary_10_1007_s00449_020_02369_7 crossref_primary_10_1016_j_jhazmat_2021_127773 crossref_primary_10_1016_j_scitotenv_2021_148333 crossref_primary_10_1016_j_dwt_2024_100138 crossref_primary_10_1016_j_scitotenv_2022_153266 crossref_primary_10_1016_j_scitotenv_2024_176841 crossref_primary_10_1016_j_jhazmat_2024_133984 crossref_primary_10_1016_j_aquatox_2025_107501 crossref_primary_10_1016_j_envpol_2021_118101 crossref_primary_10_1039_D0EN00654H crossref_primary_10_1016_j_jhazmat_2020_123709 crossref_primary_10_1016_j_seppur_2024_128991 crossref_primary_10_1007_s13762_025_06433_1 crossref_primary_10_1016_j_jinorgbio_2020_111201 crossref_primary_10_1016_j_biortech_2021_126064 crossref_primary_10_1016_j_marenvres_2024_106645 crossref_primary_10_1016_j_hazadv_2022_100072 crossref_primary_10_19113_sdufenbed_1548817 crossref_primary_10_1016_j_scitotenv_2021_147535 crossref_primary_10_1016_j_jhazmat_2021_127529 crossref_primary_10_1016_j_marenvres_2023_106125 crossref_primary_10_1016_j_scitotenv_2023_162414 crossref_primary_10_1016_j_chemosphere_2019_125193 crossref_primary_10_1016_j_scitotenv_2023_167785 crossref_primary_10_1016_j_ecoenv_2021_112199 crossref_primary_10_1016_j_chemosphere_2022_134370 crossref_primary_10_1016_j_aquatox_2023_106725 crossref_primary_10_1007_s11356_024_34960_w crossref_primary_10_1016_j_chemosphere_2023_138332 crossref_primary_10_1039_D3EN00742A crossref_primary_10_1016_j_jhazmat_2025_137223 crossref_primary_10_1016_j_envpol_2024_124227 crossref_primary_10_1016_j_scitotenv_2022_155142 crossref_primary_10_1016_j_scitotenv_2023_163608 crossref_primary_10_1016_j_chemosphere_2023_140760 crossref_primary_10_1016_j_watres_2023_120778 crossref_primary_10_1016_j_envpol_2023_123079 crossref_primary_10_1016_j_aquatox_2023_106395 crossref_primary_10_1016_j_algal_2021_102296 crossref_primary_10_3390_atmos15111380 crossref_primary_10_1016_j_scitotenv_2023_164388 crossref_primary_10_1007_s11356_021_16665_6 crossref_primary_10_1016_j_gr_2021_08_013 crossref_primary_10_1016_j_envres_2022_113777 crossref_primary_10_1016_j_gr_2021_08_011 crossref_primary_10_1016_j_marpolbul_2021_112480 crossref_primary_10_3390_toxins13040293 crossref_primary_10_1016_j_apsoil_2025_106278 crossref_primary_10_1016_j_envpol_2024_124237 crossref_primary_10_1016_j_scitotenv_2020_140518 crossref_primary_10_1016_j_scitotenv_2022_153074 crossref_primary_10_1016_j_jhazmat_2022_130081 crossref_primary_10_1016_j_scitotenv_2020_141603 crossref_primary_10_1080_10643389_2023_2224182 crossref_primary_10_3389_fenvs_2020_551075 crossref_primary_10_1007_s11270_024_07343_7 crossref_primary_10_1016_j_scitotenv_2023_161780 crossref_primary_10_1007_s11356_023_27651_5 crossref_primary_10_3390_microorganisms11051108 crossref_primary_10_1007_s11356_022_23278_0 crossref_primary_10_1016_j_envpol_2025_125996 crossref_primary_10_1007_s11356_021_16448_z crossref_primary_10_1016_j_marpolbul_2022_114505 crossref_primary_10_3390_toxics11030242 crossref_primary_10_1016_j_scitotenv_2021_144969 crossref_primary_10_1016_j_jenvman_2021_113995 crossref_primary_10_1016_j_emcon_2025_100486 crossref_primary_10_3389_fenvs_2020_00131 crossref_primary_10_1007_s11356_024_32564_y crossref_primary_10_1016_j_jhazmat_2023_132318 crossref_primary_10_1016_j_scitotenv_2020_141280 crossref_primary_10_1016_j_chemosphere_2022_137199 crossref_primary_10_1016_j_chemosphere_2021_130262 crossref_primary_10_1016_j_jhazmat_2021_127174 crossref_primary_10_1016_j_watres_2025_124590 |
| Cites_doi | 10.3390/ma7042815 10.1371/journal.pone.0018026 10.1016/j.ecss.2015.07.023 10.1016/j.marchem.2014.06.001 10.1016/j.chemosphere.2018.05.170 10.1126/science.1094559 10.1016/j.marpolbul.2011.05.030 10.1021/es504730k 10.1016/j.ecoenv.2009.04.006 10.1016/j.marpolbul.2015.11.054 10.1016/S1360-1385(02)02312-9 10.1016/j.ecoenv.2009.01.003 10.1016/j.jhazmat.2019.04.039 10.1016/j.marpolbul.2010.07.014 10.1016/j.polymdegradstab.2007.11.008 10.1021/jp1054759 10.1021/sc400103x 10.1016/S1011-1344(98)00076-1 10.1016/j.scitotenv.2018.02.079 10.1016/j.aquatox.2015.04.018 10.1016/j.ecoenv.2017.05.048 10.1016/j.marchem.2015.04.003 10.1021/cm048357f 10.1016/j.envpol.2018.11.100 10.1016/j.ecoenv.2005.03.013 10.1002/tox.20636 10.1016/j.envpol.2018.01.024 10.1016/j.marpolbul.2009.12.013 10.1016/j.envpol.2016.05.006 10.1016/j.aquatox.2018.02.015 10.1016/j.envpol.2016.11.005 10.1016/j.envpol.2015.08.027 10.1021/acs.est.6b06155 10.1016/0025-326X(93)90188-P 10.1016/j.ecoenv.2014.03.021 10.1016/j.marpolbul.2016.06.048 10.1021/es303303g 10.1065/espr2006.10.355 10.1016/j.ecss.2015.12.003 10.1016/j.aquatox.2017.06.008 10.1016/j.biortech.2015.07.101 10.1007/BF02987309 10.1016/j.ecoenv.2019.02.020 10.1016/j.envpol.2011.08.052 10.1016/j.biortech.2016.01.081 10.1016/j.envpol.2013.02.031 10.1021/es0010498 10.1016/j.scitotenv.2019.134254 10.1016/j.cub.2013.10.012 10.1021/acs.est.5b05416 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.aquatox.2019.105319 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Ecology |
| EISSN | 1879-1514 |
| ExternalDocumentID | 31586885 10_1016_j_aquatox_2019_105319 S0166445X19305648 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HMT HVGLF HZ~ IHE J1W KOM LW9 LY9 M34 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCU SDF SDG SDP SEN SES SEW SPCBC SPT SSA SSZ T5K TN5 WUQ ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-b5e2b028e4a18dab56b9d3ae348e7153b80b8aa984ec701144dae79c9ba2cf5d3 |
| ISICitedReferencesCount | 240 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496606500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-445X 1879-1514 |
| IngestDate | Thu Oct 02 11:47:20 EDT 2025 Sun Sep 28 01:01:24 EDT 2025 Wed Feb 19 02:31:55 EST 2025 Tue Nov 18 21:45:57 EST 2025 Sat Nov 29 07:29:07 EST 2025 Fri Feb 23 02:34:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Oxidative stress Microalgae Copper Chlorella vulgaris Aged microplastics |
| Language | English |
| License | Copyright © 2019. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-b5e2b028e4a18dab56b9d3ae348e7153b80b8aa984ec701144dae79c9ba2cf5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31586885 |
| PQID | 2301888228 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2352422342 proquest_miscellaneous_2301888228 pubmed_primary_31586885 crossref_citationtrail_10_1016_j_aquatox_2019_105319 crossref_primary_10_1016_j_aquatox_2019_105319 elsevier_sciencedirect_doi_10_1016_j_aquatox_2019_105319 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Aquatic toxicology |
| PublicationTitleAlternate | Aquat Toxicol |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Browne, Niven, Galloway, Thompson (bib0040) 2013; 23 Hamid, Chowdhury, Zain (bib0095) 2014; 7 Mittler (bib0160) 2002; 7 Brennecke, Duarte, Paiva, Caçador, Canning-Clodeade (bib0035) 2016; 178 Holmes, Turner, Thompson (bib0100) 2012; 160 Peng, Zhang, Lan, Basak, Bond, Ding, Du (bib0195) 2016; 29 Murphy, Ewins, Carbonnier, Quinn (bib0165) 2016; 50 Long, Moriceau, Gallinari, Lambert, Huvet, Raffray, Soudant (bib0125) 2015; 175 Wu, Guo, Zhang, Zhang, Xie, Deng (bib0280) 2019; 374 Debelius, Forja, DelValls, Lubián (bib0070) 2009; 72 Gewert, Plassmann, Macleod (bib0080) 2015; 17 Prata, Lavorante, Montenegro, Guilhermino (bib0205) 2018; 197 Bergami, Pugnalini, Vannuccini, Manfra, Faleri, Savorelli, Dawson, Corsi (bib0020) 2017; 189 USEPA (bib0260) 2007 Baztan, Jorgensen, Pahl, Thompson (bib0015) 2016; 294 Ashton, Holmes, Turner (bib0010) 2010; 60 Zhao, Zhu, Li (bib0285) 2015; 206 Song, Hong, Jang, Han, Jung, Shim (bib0240) 2018; 51 Sabatini, Juárez, Eppis, Bianchi, Luquet, Molina (bib0235) 2009; 72 Fok, Fung (bib0075) 2013 Canning-Clode, Fofonoff, Riedel, Torchin, Ruiz (bib0050) 2011; 6 Peng, Lan, Zhang, Sarch, Laporte (bib0200) 2015; 197 Chen, Powell, Mortimer, Ke (bib0055) 2012; 46 Suhrhoff, Scholz-Böttcher (bib0250) 2016; 102 Hjertberg, Sörvik (bib0175) 1984 Vavilin, Ducruet, Matorin, Venediktov, Rubin (bib0270) 1998; 42 Lozano, Trombini, Crespo, Blasco, Moreno-Garrido (bib0130) 2014; 104 Andrady (bib0005) 2011; 62 Davarpanah, Guilhermino (bib0065) 2015; 167 Hamed, Selim, Klöck, AbdElgawad (bib0090) 2017; 144 Quigg, Chin, Chen, Zhang, Jiang, Miao, Schwehr, Xu, Santschi (bib0210) 2013; 1 Ma, Zhou, Yang, Lin (bib0140) 2015; 49 Holmes, Turner, Thompson (bib0105) 2014; 167 Valavanidis, Vlahogianni, Dassenakis, Scoullos (bib0265) 2006; 64 Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib0155) 2001; 35 Stevens (bib0245) 2001; 8 Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, Hadri, Grassl, Reynaud (bib0085) 2018; 235 Peng, Zhang, Cheng, Wang, Lan (bib0190) 2016; 206 Claisse, Alzieu (bib0060) 1993; 26 Mao, Ai, Chen, Zhang, Zeng, Kang, Li, Gu, He, Li (bib0145) 2018; 208 Qian, Li, Pan, Sun, Ye, Jin, Fu (bib0150) 2012; 27 Brandon, Goldstein, Ohman (bib0030) 2016; 110 Jonas, Millward (bib0110) 2010; 61 Singh, Sharma (bib0230) 2008; 93 Wright, Thompson, Galloway (bib0275) 2013; 178 Ram (bib0215) 1997 Thompson, Olsen, Mitchell, Davis, Rowland, John, McGonigle, Russell (bib0255) 2004; 304 Cai, Wang, Peng, Wu, Tan (bib0045) 2018; 628–629 Bhattacharya, Lin, Turner, Ke (bib0025) 2010; 114 Liu, Zhu, Yang, Sun, Yu, Ma (bib0120) 2018; 246 Garrido, Linares, Campillo, Albentosa (bib0225) 2019; 173 Luís, Ferreira, Fonte, Oliveira, Guilhermino (bib0135) 2015; 164 Lagarde, Olivier, Zanella, Daniel, Hiard, Caruso (bib0115) 2016; 215 Peng, Fu, Qi, Lan, Yu, Ge (bib0185) 2020; 698 Paulina, Hernán, Eliana (bib0180) 2011; 2 Ramanathan, Fisher, Ruoff, Brinson (bib0220) 2011; 17 Oliveira, Bocio, Trevilato, Takayanagui (bib0170) 2007; 14 Zhang, Chen, Wang, Tan (bib0290) 2016; 220 Paulina (10.1016/j.aquatox.2019.105319_bib0180) 2011; 2 Mao (10.1016/j.aquatox.2019.105319_bib0145) 2018; 208 Murphy (10.1016/j.aquatox.2019.105319_bib0165) 2016; 50 Fok (10.1016/j.aquatox.2019.105319_bib0075) 2013 Singh (10.1016/j.aquatox.2019.105319_bib0230) 2008; 93 Zhang (10.1016/j.aquatox.2019.105319_bib0290) 2016; 220 Oliveira (10.1016/j.aquatox.2019.105319_bib0170) 2007; 14 Hamid (10.1016/j.aquatox.2019.105319_bib0095) 2014; 7 Ashton (10.1016/j.aquatox.2019.105319_bib0010) 2010; 60 Mittler (10.1016/j.aquatox.2019.105319_bib0160) 2002; 7 Peng (10.1016/j.aquatox.2019.105319_bib0190) 2016; 206 Hamed (10.1016/j.aquatox.2019.105319_bib0090) 2017; 144 Jonas (10.1016/j.aquatox.2019.105319_bib0110) 2010; 61 Lozano (10.1016/j.aquatox.2019.105319_bib0130) 2014; 104 Bhattacharya (10.1016/j.aquatox.2019.105319_bib0025) 2010; 114 Holmes (10.1016/j.aquatox.2019.105319_bib0100) 2012; 160 Bergami (10.1016/j.aquatox.2019.105319_bib0020) 2017; 189 Brennecke (10.1016/j.aquatox.2019.105319_bib0035) 2016; 178 Suhrhoff (10.1016/j.aquatox.2019.105319_bib0250) 2016; 102 Zhao (10.1016/j.aquatox.2019.105319_bib0285) 2015; 206 Holmes (10.1016/j.aquatox.2019.105319_bib0105) 2014; 167 Prata (10.1016/j.aquatox.2019.105319_bib0205) 2018; 197 Ramanathan (10.1016/j.aquatox.2019.105319_bib0220) 2011; 17 Gigault (10.1016/j.aquatox.2019.105319_bib0085) 2018; 235 Stevens (10.1016/j.aquatox.2019.105319_bib0245) 2001; 8 Peng (10.1016/j.aquatox.2019.105319_bib0185) 2020; 698 Gewert (10.1016/j.aquatox.2019.105319_bib0080) 2015; 17 Qian (10.1016/j.aquatox.2019.105319_bib0150) 2012; 27 Canning-Clode (10.1016/j.aquatox.2019.105319_bib0050) 2011; 6 Garrido (10.1016/j.aquatox.2019.105319_bib0225) 2019; 173 Peng (10.1016/j.aquatox.2019.105319_bib0195) 2016; 29 USEPA (10.1016/j.aquatox.2019.105319_bib0260) 2007 Ma (10.1016/j.aquatox.2019.105319_bib0140) 2015; 49 Wright (10.1016/j.aquatox.2019.105319_bib0275) 2013; 178 Lagarde (10.1016/j.aquatox.2019.105319_bib0115) 2016; 215 Andrady (10.1016/j.aquatox.2019.105319_bib0005) 2011; 62 Davarpanah (10.1016/j.aquatox.2019.105319_bib0065) 2015; 167 Valavanidis (10.1016/j.aquatox.2019.105319_bib0265) 2006; 64 Hjertberg (10.1016/j.aquatox.2019.105319_bib0175) 1984 Brandon (10.1016/j.aquatox.2019.105319_bib0030) 2016; 110 Claisse (10.1016/j.aquatox.2019.105319_bib0060) 1993; 26 Liu (10.1016/j.aquatox.2019.105319_bib0120) 2018; 246 Baztan (10.1016/j.aquatox.2019.105319_bib0015) 2016; 294 Ram (10.1016/j.aquatox.2019.105319_bib0215) 1997 Sabatini (10.1016/j.aquatox.2019.105319_bib0235) 2009; 72 Thompson (10.1016/j.aquatox.2019.105319_bib0255) 2004; 304 Long (10.1016/j.aquatox.2019.105319_bib0125) 2015; 175 Browne (10.1016/j.aquatox.2019.105319_bib0040) 2013; 23 Chen (10.1016/j.aquatox.2019.105319_bib0055) 2012; 46 Debelius (10.1016/j.aquatox.2019.105319_bib0070) 2009; 72 Mato (10.1016/j.aquatox.2019.105319_bib0155) 2001; 35 Peng (10.1016/j.aquatox.2019.105319_bib0200) 2015; 197 Cai (10.1016/j.aquatox.2019.105319_bib0045) 2018; 628–629 Vavilin (10.1016/j.aquatox.2019.105319_bib0270) 1998; 42 Wu (10.1016/j.aquatox.2019.105319_bib0280) 2019; 374 Song (10.1016/j.aquatox.2019.105319_bib0240) 2018; 51 Quigg (10.1016/j.aquatox.2019.105319_bib0210) 2013; 1 Luís (10.1016/j.aquatox.2019.105319_bib0135) 2015; 164 |
| References_xml | – volume: 29 start-page: 143 year: 2016 end-page: 152 ident: bib0195 article-title: Alleviation of oxygen stress on publication-title: J. Appl. Physiol. – volume: 17 start-page: 1290 year: 2011 end-page: 1295 ident: bib0220 article-title: Amino-functionalized carbon nanotubes for binding to polymers and biological systems publication-title: Chem. Mater. – volume: 46 start-page: 12178 year: 2012 end-page: 12185 ident: bib0055 article-title: Adaptive interactions between Zinc Oxide nanoparticles and Chlorella sp publication-title: Environ. Sci. Technol. – volume: 178 start-page: 189 year: 2016 end-page: 195 ident: bib0035 article-title: Microplastics as vector for heavy metal contamination from the marine environment publication-title: Estuar. Coast. Shelf Sci. – volume: 7 start-page: 405 year: 2002 end-page: 410 ident: bib0160 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. – volume: 374 start-page: 219 year: 2019 end-page: 227 ident: bib0280 article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae publication-title: J. Hazard. Mater. – volume: 23 start-page: 2388 year: 2013 end-page: 2392 ident: bib0040 article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity publication-title: Curr. Biol. – volume: 144 start-page: 19 year: 2017 end-page: 25 ident: bib0090 article-title: Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses publication-title: Ecotoxicol. Environ. Saf. – volume: 61 start-page: 52 year: 2010 end-page: 67 ident: bib0110 article-title: Metals and nutrients in the Severn estuary and Bristol Channel: contemporary inputs and distributions publication-title: Mar. Pollut. Bull. – volume: 8 start-page: 146 year: 2001 ident: bib0245 article-title: Chlorine and the environment: an overview of the chlorine industry publication-title: Environ. Sci. Pollut. Res. – year: 1997 ident: bib0215 article-title: The chemistry of polymers publication-title: Fundamentals of Polymer Engineering – volume: 304 start-page: 838 year: 2004 ident: bib0255 article-title: Lost at Sea: Where is all the plastic? publication-title: Science – volume: 64 start-page: 178 year: 2006 end-page: 189 ident: bib0265 article-title: Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants publication-title: Ecotocicol. Environ. Saf. – volume: 206 start-page: 597 year: 2015 end-page: 604 ident: bib0285 article-title: Microplastic in three urban estuaries publication-title: China. Environ. Pollut. – volume: 60 start-page: 2050 year: 2010 end-page: 2055 ident: bib0010 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. – volume: 167 start-page: 25 year: 2014 end-page: 32 ident: bib0105 article-title: Interactions between trace metals and plastic production pellets under estuarine conditions publication-title: Mar. Chem. – volume: 114 start-page: 16556 year: 2010 end-page: 16561 ident: bib0025 article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis publication-title: J. Phys. Chem. C – volume: 246 start-page: 26 year: 2018 end-page: 33 ident: bib0120 article-title: Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater publication-title: Environ. Pollut. – volume: 197 start-page: 143 year: 2018 end-page: 152 ident: bib0205 article-title: Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii publication-title: Aquat. Toxicol. – volume: 50 start-page: 5800 year: 2016 end-page: 5808 ident: bib0165 article-title: Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment publication-title: Environ. Sci. Technol. – volume: 197 start-page: 143 year: 2015 end-page: 151 ident: bib0200 article-title: Control of protozoa contamination and lipid accumulation in publication-title: Bioresour. Technol. – volume: 1 start-page: 686 year: 2013 end-page: 702 ident: bib0210 article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter publication-title: ACS Sustainable Chem. Eng. – volume: 72 start-page: 1200 year: 2009 end-page: 1206 ident: bib0235 article-title: Oxidative stress and antioxidant defenses in two green microalgae exposed to copper publication-title: Ecotoxicol. Environ. Saf. – volume: 62 start-page: 1596 year: 2011 end-page: 1605 ident: bib0005 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. – volume: 42 start-page: 233 year: 1998 end-page: 239 ident: bib0270 article-title: Membrane lipid peroxidation, cell viability and Photosystem II activity in the green alga publication-title: J. Photochem. Photobiol. B – volume: 175 start-page: 39 year: 2015 end-page: 46 ident: bib0125 article-title: Interactions between microplastics and phytoplankton aggregates: impact on their respective fates publication-title: Mar. Chem. – volume: 14 start-page: 483 year: 2007 end-page: 489 ident: bib0170 article-title: Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant publication-title: Environ. Sci. Pollut. Res. – volume: 167 start-page: 269 year: 2015 end-page: 275 ident: bib0065 article-title: Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii publication-title: Estuar. Coasta. Shelf. Sci. – volume: 220 start-page: 1282 year: 2016 end-page: 1288 ident: bib0290 article-title: Toxic effects of microplastic on marine microalgae publication-title: Environ. Pollut. – volume: 2 start-page: 280 year: 2011 end-page: 285 ident: bib0180 article-title: Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae publication-title: Lat. Am. J. Aquat. Res. – volume: 104 start-page: 294 year: 2014 end-page: 301 ident: bib0130 article-title: ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine) publication-title: Ecotoxicol. Environ. Saf. – volume: 189 start-page: 159 year: 2017 end-page: 169 ident: bib0020 article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species publication-title: Aquat. Toxicol. – volume: 26 start-page: 395 year: 1993 end-page: 397 ident: bib0060 article-title: Copper contamination as a result of antifouling paint regulations? publication-title: Mar. Pollut. Bull. – volume: 215 start-page: 331 year: 2016 end-page: 339 ident: bib0115 article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type publication-title: Environ. Pollut. – volume: 208 start-page: 59 year: 2018 end-page: 68 ident: bib0145 article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period publication-title: Chemosphere – year: 2007 ident: bib0260 article-title: Aquatic Life Ambient Freshwater Quality Criteria – year: 2013 ident: bib0075 article-title: Microplastics As a Potential Carrier of DDT in the Marine Environment – volume: 17 start-page: 1513 year: 2015 end-page: 1521 ident: bib0080 article-title: Pathways for degradation of plastic polymers floating in the marine environment publication-title: Environ. Sci: Processes. Impacts – year: 1984 ident: bib0175 article-title: Thermal degradation of PVC publication-title: DegraDation and Stabilisation of PVC – volume: 49 start-page: 932 year: 2015 end-page: 939 ident: bib0140 article-title: Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH publication-title: Environ. Sci. Technol. – volume: 628–629 start-page: 740 year: 2018 end-page: 747 ident: bib0045 article-title: Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments publication-title: Sci. Total Environ. – volume: 235 start-page: 1030 year: 2018 end-page: 1034 ident: bib0085 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. – volume: 93 start-page: 561 year: 2008 end-page: 584 ident: bib0230 article-title: Mechanistic implications of plastic degradation publication-title: Polym. Degrad. Stab. – volume: 294 start-page: 189 year: 2016 end-page: 219 ident: bib0015 article-title: Fate and impact of microplastics in marine ecosystems publication-title: MICRO – volume: 206 start-page: 255 year: 2016 end-page: 263 ident: bib0190 article-title: Cultivation of publication-title: Bioresour. Technol. – volume: 102 start-page: 84 year: 2016 end-page: 94 ident: bib0250 article-title: Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment publication-title: Mar. Pollut. Bull. – volume: 7 start-page: 2815 year: 2014 end-page: 2832 ident: bib0095 article-title: Base catalytic approach: a promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu(II) ions in single solute system publication-title: Materials – volume: 6 start-page: e18026 year: 2011 ident: bib0050 article-title: The effects of copper pollution on fouling assemblage diversity: a tropical-temperate comparison publication-title: PLoS One – volume: 160 start-page: 42 year: 2012 end-page: 48 ident: bib0100 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. – volume: 698 start-page: 134254 year: 2020 ident: bib0185 article-title: Micro- and nano-plastics in marine environment: source, distribution and threats — a review publication-title: Sci. Total Environ. – volume: 164 start-page: 163 year: 2015 end-page: 174 ident: bib0135 article-title: Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby ( publication-title: Aquat. Toxicol. – volume: 110 start-page: 299 year: 2016 end-page: 308 ident: bib0030 article-title: Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns publication-title: Mar. Pollut. Bull. – volume: 51 start-page: 4368 year: 2018 end-page: 4376 ident: bib0240 article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type publication-title: Environ. Sci. Technol. – volume: 72 start-page: 1503 year: 2009 end-page: 1513 ident: bib0070 article-title: Toxicity and bioaccumulation of copper and lead in five marine microalgae publication-title: Ecotoxicol. Environ. Saf. – volume: 35 start-page: 318 year: 2001 end-page: 324 ident: bib0155 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. – volume: 178 start-page: 483 year: 2013 end-page: 492 ident: bib0275 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pollut. – volume: 27 start-page: 229 year: 2012 end-page: 237 ident: bib0150 article-title: Effects of streptomycin on growth of algae publication-title: Environ. Toxicol. – volume: 173 start-page: 103 year: 2019 end-page: 109 ident: bib0225 article-title: Effect of microplastics on the toxicity of chlorpyrifos to the microalgae publication-title: Ecotoxicol. Environ. Saf. – volume: 7 start-page: 2815 year: 2014 ident: 10.1016/j.aquatox.2019.105319_bib0095 article-title: Base catalytic approach: a promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu(II) ions in single solute system publication-title: Materials doi: 10.3390/ma7042815 – volume: 6 start-page: e18026 issue: 3 year: 2011 ident: 10.1016/j.aquatox.2019.105319_bib0050 article-title: The effects of copper pollution on fouling assemblage diversity: a tropical-temperate comparison publication-title: PLoS One doi: 10.1371/journal.pone.0018026 – volume: 167 start-page: 269 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0065 article-title: Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii publication-title: Estuar. Coasta. Shelf. Sci. doi: 10.1016/j.ecss.2015.07.023 – volume: 17 start-page: 1513 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0080 article-title: Pathways for degradation of plastic polymers floating in the marine environment publication-title: Environ. Sci: Processes. Impacts – volume: 167 start-page: 25 year: 2014 ident: 10.1016/j.aquatox.2019.105319_bib0105 article-title: Interactions between trace metals and plastic production pellets under estuarine conditions publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.06.001 – volume: 208 start-page: 59 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0145 article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.170 – volume: 304 start-page: 838 year: 2004 ident: 10.1016/j.aquatox.2019.105319_bib0255 article-title: Lost at Sea: Where is all the plastic? publication-title: Science doi: 10.1126/science.1094559 – volume: 62 start-page: 1596 year: 2011 ident: 10.1016/j.aquatox.2019.105319_bib0005 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.05.030 – volume: 49 start-page: 932 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0140 article-title: Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH publication-title: Environ. Sci. Technol. doi: 10.1021/es504730k – volume: 72 start-page: 1503 year: 2009 ident: 10.1016/j.aquatox.2019.105319_bib0070 article-title: Toxicity and bioaccumulation of copper and lead in five marine microalgae publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2009.04.006 – volume: 102 start-page: 84 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0250 article-title: Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.11.054 – volume: 7 start-page: 405 year: 2002 ident: 10.1016/j.aquatox.2019.105319_bib0160 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02312-9 – volume: 72 start-page: 1200 year: 2009 ident: 10.1016/j.aquatox.2019.105319_bib0235 article-title: Oxidative stress and antioxidant defenses in two green microalgae exposed to copper publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2009.01.003 – volume: 374 start-page: 219 year: 2019 ident: 10.1016/j.aquatox.2019.105319_bib0280 article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.04.039 – volume: 60 start-page: 2050 year: 2010 ident: 10.1016/j.aquatox.2019.105319_bib0010 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.07.014 – volume: 93 start-page: 561 issue: 3 year: 2008 ident: 10.1016/j.aquatox.2019.105319_bib0230 article-title: Mechanistic implications of plastic degradation publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2007.11.008 – volume: 114 start-page: 16556 year: 2010 ident: 10.1016/j.aquatox.2019.105319_bib0025 article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis publication-title: J. Phys. Chem. C doi: 10.1021/jp1054759 – volume: 1 start-page: 686 year: 2013 ident: 10.1016/j.aquatox.2019.105319_bib0210 article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc400103x – volume: 42 start-page: 233 year: 1998 ident: 10.1016/j.aquatox.2019.105319_bib0270 article-title: Membrane lipid peroxidation, cell viability and Photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions publication-title: J. Photochem. Photobiol. B doi: 10.1016/S1011-1344(98)00076-1 – volume: 628–629 start-page: 740 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0045 article-title: Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.079 – volume: 164 start-page: 163 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0135 article-title: Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.04.018 – volume: 144 start-page: 19 year: 2017 ident: 10.1016/j.aquatox.2019.105319_bib0090 article-title: Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.05.048 – year: 1984 ident: 10.1016/j.aquatox.2019.105319_bib0175 article-title: Thermal degradation of PVC – volume: 175 start-page: 39 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0125 article-title: Interactions between microplastics and phytoplankton aggregates: impact on their respective fates publication-title: Mar. Chem. doi: 10.1016/j.marchem.2015.04.003 – volume: 294 start-page: 189 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0015 article-title: Fate and impact of microplastics in marine ecosystems publication-title: MICRO – volume: 17 start-page: 1290 year: 2011 ident: 10.1016/j.aquatox.2019.105319_bib0220 article-title: Amino-functionalized carbon nanotubes for binding to polymers and biological systems publication-title: Chem. Mater. doi: 10.1021/cm048357f – volume: 246 start-page: 26 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0120 article-title: Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.100 – volume: 64 start-page: 178 year: 2006 ident: 10.1016/j.aquatox.2019.105319_bib0265 article-title: Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants publication-title: Ecotocicol. Environ. Saf. doi: 10.1016/j.ecoenv.2005.03.013 – year: 2013 ident: 10.1016/j.aquatox.2019.105319_bib0075 – volume: 27 start-page: 229 issue: 4 year: 2012 ident: 10.1016/j.aquatox.2019.105319_bib0150 article-title: Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa publication-title: Environ. Toxicol. doi: 10.1002/tox.20636 – volume: 235 start-page: 1030 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0085 article-title: Current opinion: what is a nanoplastic? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.01.024 – volume: 61 start-page: 52 year: 2010 ident: 10.1016/j.aquatox.2019.105319_bib0110 article-title: Metals and nutrients in the Severn estuary and Bristol Channel: contemporary inputs and distributions publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2009.12.013 – volume: 215 start-page: 331 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0115 article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.006 – volume: 2 start-page: 280 year: 2011 ident: 10.1016/j.aquatox.2019.105319_bib0180 article-title: Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc publication-title: Lat. Am. J. Aquat. Res. – volume: 197 start-page: 143 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0205 article-title: Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.02.015 – volume: 220 start-page: 1282 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0290 article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.11.005 – year: 2007 ident: 10.1016/j.aquatox.2019.105319_bib0260 – volume: 206 start-page: 597 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0285 article-title: Microplastic in three urban estuaries publication-title: China. Environ. Pollut. doi: 10.1016/j.envpol.2015.08.027 – volume: 51 start-page: 4368 year: 2018 ident: 10.1016/j.aquatox.2019.105319_bib0240 article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06155 – volume: 26 start-page: 395 issue: 7 year: 1993 ident: 10.1016/j.aquatox.2019.105319_bib0060 article-title: Copper contamination as a result of antifouling paint regulations? publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(93)90188-P – year: 1997 ident: 10.1016/j.aquatox.2019.105319_bib0215 article-title: The chemistry of polymers – volume: 104 start-page: 294 year: 2014 ident: 10.1016/j.aquatox.2019.105319_bib0130 article-title: ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine) publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.03.021 – volume: 110 start-page: 299 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0030 article-title: Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.06.048 – volume: 46 start-page: 12178 year: 2012 ident: 10.1016/j.aquatox.2019.105319_bib0055 article-title: Adaptive interactions between Zinc Oxide nanoparticles and Chlorella sp publication-title: Environ. Sci. Technol. doi: 10.1021/es303303g – volume: 14 start-page: 483 year: 2007 ident: 10.1016/j.aquatox.2019.105319_bib0170 article-title: Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant publication-title: Environ. Sci. Pollut. Res. doi: 10.1065/espr2006.10.355 – volume: 178 start-page: 189 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0035 article-title: Microplastics as vector for heavy metal contamination from the marine environment publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2015.12.003 – volume: 189 start-page: 159 year: 2017 ident: 10.1016/j.aquatox.2019.105319_bib0020 article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2017.06.008 – volume: 29 start-page: 143 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0195 article-title: Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH publication-title: J. Appl. Physiol. – volume: 197 start-page: 143 year: 2015 ident: 10.1016/j.aquatox.2019.105319_bib0200 article-title: Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: effects of pH and dissolved inorganic carbon publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.101 – volume: 8 start-page: 146 year: 2001 ident: 10.1016/j.aquatox.2019.105319_bib0245 article-title: Chlorine and the environment: an overview of the chlorine industry publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/BF02987309 – volume: 173 start-page: 103 year: 2019 ident: 10.1016/j.aquatox.2019.105319_bib0225 article-title: Effect of microplastics on the toxicity of chlorpyrifos to the microalgae Isochrysis galbana, clone t-ISO publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.02.020 – volume: 160 start-page: 42 year: 2012 ident: 10.1016/j.aquatox.2019.105319_bib0100 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.08.052 – volume: 206 start-page: 255 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0190 article-title: Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.081 – volume: 178 start-page: 483 year: 2013 ident: 10.1016/j.aquatox.2019.105319_bib0275 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.02.031 – volume: 35 start-page: 318 year: 2001 ident: 10.1016/j.aquatox.2019.105319_bib0155 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. doi: 10.1021/es0010498 – volume: 698 start-page: 134254 year: 2020 ident: 10.1016/j.aquatox.2019.105319_bib0185 article-title: Micro- and nano-plastics in marine environment: source, distribution and threats — a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134254 – volume: 23 start-page: 2388 year: 2013 ident: 10.1016/j.aquatox.2019.105319_bib0040 article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.10.012 – volume: 50 start-page: 5800 year: 2016 ident: 10.1016/j.aquatox.2019.105319_bib0165 article-title: Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05416 |
| SSID | ssj0000249 |
| Score | 2.6525085 |
| Snippet | •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae... Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105319 |
| SubjectTerms | Aged microplastics Antioxidants - metabolism Biomass carbon Cell Proliferation - drug effects Chlorella vulgaris Chlorella vulgaris - cytology Chlorella vulgaris - drug effects Chlorella vulgaris - enzymology Chlorella vulgaris - ultrastructure Copper Copper - toxicity growth retardation hydrogen bonding malondialdehyde Malondialdehyde - metabolism marine ecosystems Microalgae Microalgae - cytology Microalgae - drug effects Microalgae - enzymology Microalgae - ultrastructure microplastics Microplastics - toxicity moieties Oxidative stress Oxidative Stress - drug effects Particle Size physicochemical properties pollutants poly(vinyl chloride) Polyvinyl Chloride - toxicity seawater Seawater - chemistry superoxide dismutase Superoxide Dismutase - metabolism toxicity Ultraviolet Rays Water Pollutants, Chemical - toxicity |
| Title | Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris |
| URI | https://dx.doi.org/10.1016/j.aquatox.2019.105319 https://www.ncbi.nlm.nih.gov/pubmed/31586885 https://www.proquest.com/docview/2301888228 https://www.proquest.com/docview/2352422342 |
| Volume | 216 |
| WOSCitedRecordID | wos000496606500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000249 issn: 0166-445X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLYo3bS9TFt3Y5fKk6a9oFDiOMR-RAi0TRVbJSqhvUS2Y2gQC2khCLT_sd87O3YSkOjaPewlQlZ8cvk-7HNOzgWAj4QTwYWPHDbB1NG9HBxlRgiHYeJxry1dNOF5s4lgOCTjMf1eq_0ucmHW8yBJyGZD0_8KtRpTYOvU2X-AuxSqBtRvBbo6KtjV8V7Ad6dKh_yp4-xSpRnnVZjTxXy7jpPtvCmudMRdJPMyETpBqog9T1NpoikFy7R7fxNHpiS4TSZZ5eG1SyNY53_IZk_L0sFTzXWmE0Li5a6m273O8mKwKyVK7PnuB5nR3JNptLD75q7n-kK9meksLgk3MC7aH1cymSqZJZkvTL_tjMXbYtR6L1xq0_iqBZcEasw3iaQteWDMrtLI3V1n3XztOLgFGG_ErMX0Yy42OnqPtqrz90tuD7-Fg8vz83DUH48-pdeO7kamv9rb1ixH4BgFPiV1cNz90h9_rfZ4lBtW5Z1WuWFnB698m9Zzm1WTazejp-CJNUtg19DpGajJ5AQ86hXdAE_Aw74B8Tn4pQkG9wgGS4LBgmCwIBjUBIOGYFARDOYEgyXBoCEYtASDFcFgSTBYEOwFuBz0R73Pjm3h4QiPkpXDfYm4UmElZi6JGPc7nEYekx4mMlCbLSdtThijBEsRaNscR0wGVFDOkJj4kfcS1JNFIl8D2BaMehJPOpFwsTtBOuObYT_g0sUoEqwBcPGKQ2Hr2-s2K_OwCGSchRaZUCMTGmQaoFVOS02Bl7smkAK_0GqpRvsMFQPvmvqhwDtU8OlPcyyRi2wZIrXPEmXsIvK3c3ylTyMPowZ4ZchS3rHn-qRDiP_mHld4Cx5X_8R3oL66yeR78ECsV_Hy5hQcBWNyavn-B1yO3LM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aged+microplastics+polyvinyl+chloride+interact+with+copper+and+cause+oxidative+stress+towards+microalgae+Chlorella+vulgaris&rft.jtitle=Aquatic+toxicology&rft.au=Fu%2C+Dongdong&rft.au=Zhang%2C+Qiongjie&rft.au=Fan%2C+Zhengquan&rft.au=Qi%2C+Huaiyuan&rft.date=2019-11-01&rft.issn=1879-1514&rft.eissn=1879-1514&rft.volume=216&rft.spage=105319&rft_id=info:doi/10.1016%2Fj.aquatox.2019.105319&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-445X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-445X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-445X&client=summon |