Designing a sustainable reverse logistics network for used cell phones based on offline and online trading systems

Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management Jg. 354; S. 120417
Hauptverfasser: Chen, Weidong, Liu, Yong, Han, Mingzhe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.03.2024
Schlagworte:
ISSN:0301-4797, 1095-8630, 1095-8630
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading systems and design a material efficiency strategy for used cell phones. We propose a new multi-objective optimization framework to maximize profit, carbon emissions reduction, and circularity in the process of recycling and treatment. Considering multi-period, multi-product, multi-echelon features, as well as price sensitive demand, incentives, and qualities, we established a new multi-objective mixed-integer nonlinear programming optimization model. An enhanced, Fast, Non-Dominated Solution Sorting Genetic Algorithm (ASDNSGA-II) is developed for the solution. We used operational data from a leading Chinese Internet platform to validate the proposed optimization framework. The results demonstrate that the reverse logistics network designed achieves a win–win situation regarding profit and carbon emission reduction. This significantly boosts confidence and motivation for engaging in recycling efforts. Online recycling shows robust profitability and carbon reduction capabilities. An effective coordination mechanism for pricing in both online and offline channels should be established, retaining offline methods while gradually transitioning towards online methods. To increase the collection rate, it is essential to jointly implement a transitional strategy, including recycling incentives and subsidy policies. Additionally, elevating customer environmental awareness should be viewed as a long-term strategy, mitigating the cost of increasing collection rates during the market maturity stage (high collection rates). •Solved the sustainability and circularity issues of used cell phone recycling.•Used operational data from a leading Chinese Internet recycling platform.•The reverse logistics network achieves a win–win situation in profit and carbon reduction.•Online recycling shows impressive profitability and carbon reduction potential.•Implementing recycling incentives and subsidy policies together can effectively increase the collection rate.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4797
1095-8630
1095-8630
DOI:10.1016/j.jenvman.2024.120417