Designing a sustainable reverse logistics network for used cell phones based on offline and online trading systems
Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading system...
Gespeichert in:
| Veröffentlicht in: | Journal of environmental management Jg. 354; S. 120417 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.03.2024
|
| Schlagworte: | |
| ISSN: | 0301-4797, 1095-8630, 1095-8630 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading systems and design a material efficiency strategy for used cell phones. We propose a new multi-objective optimization framework to maximize profit, carbon emissions reduction, and circularity in the process of recycling and treatment. Considering multi-period, multi-product, multi-echelon features, as well as price sensitive demand, incentives, and qualities, we established a new multi-objective mixed-integer nonlinear programming optimization model. An enhanced, Fast, Non-Dominated Solution Sorting Genetic Algorithm (ASDNSGA-II) is developed for the solution. We used operational data from a leading Chinese Internet platform to validate the proposed optimization framework. The results demonstrate that the reverse logistics network designed achieves a win–win situation regarding profit and carbon emission reduction. This significantly boosts confidence and motivation for engaging in recycling efforts. Online recycling shows robust profitability and carbon reduction capabilities. An effective coordination mechanism for pricing in both online and offline channels should be established, retaining offline methods while gradually transitioning towards online methods. To increase the collection rate, it is essential to jointly implement a transitional strategy, including recycling incentives and subsidy policies. Additionally, elevating customer environmental awareness should be viewed as a long-term strategy, mitigating the cost of increasing collection rates during the market maturity stage (high collection rates).
•Solved the sustainability and circularity issues of used cell phone recycling.•Used operational data from a leading Chinese Internet recycling platform.•The reverse logistics network achieves a win–win situation in profit and carbon reduction.•Online recycling shows impressive profitability and carbon reduction potential.•Implementing recycling incentives and subsidy policies together can effectively increase the collection rate. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0301-4797 1095-8630 1095-8630 |
| DOI: | 10.1016/j.jenvman.2024.120417 |