Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis
Background and Aim: The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (am...
Gespeichert in:
| Veröffentlicht in: | Journal of gastroenterology and hepatology Jg. 31; H. 5; S. 936 - 944 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Australia
Blackwell Publishing Ltd
01.05.2016
|
| Schlagworte: | |
| ISSN: | 0815-9319, 1440-1746, 1440-1746 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background and Aim:
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma‐glutamyltransferase [GGT]) or ultrasonography.
Methods:
Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta‐analysis.
Results
Overall, in a pooled population of 117020 patients (from 20 studies), who were followed‐up for a median period of 5 years (range: 3–14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80–2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43–1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71–2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76–1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed‐up for a median period of 4.5 years (range: 3–11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72–1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89–2.07) for GGT, and 3.22 (95% CI, 3.05–3.41) for ultrasonography, respectively.
Conclusions:
Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5‐year follow‐up. |
|---|---|
| AbstractList | Background and Aim:
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma‐glutamyltransferase [GGT]) or ultrasonography.
Methods:
Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta‐analysis.
Results
Overall, in a pooled population of 117020 patients (from 20 studies), who were followed‐up for a median period of 5 years (range: 3–14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80–2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43–1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71–2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76–1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed‐up for a median period of 4.5 years (range: 3–11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72–1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89–2.07) for GGT, and 3.22 (95% CI, 3.05–3.41) for ultrasonography, respectively.
Conclusions:
Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5‐year follow‐up. The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography. Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis. Overall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively. Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up. The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography.BACKGROUND AND AIMThe magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography.Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis.METHODSPertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis.Overall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively.RESULTSOverall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively.Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up.CONCLUSIONSNonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up. |
| Author | Romagnoli, Dante Lonardo, Amedeo Baldelli, Enrica Targher, Giovanni Zona, Stefano Ballestri, Stefano Roverato, Alberto Guaraldi, Giovanni Nascimbeni, Fabio |
| Author_xml | – sequence: 1 givenname: Stefano surname: Ballestri fullname: Ballestri, Stefano email: stefanoballestri@tiscali.it organization: Azienda USL, Internal Medicine, Pavullo Hospital, Pavullo, Italy – sequence: 2 givenname: Stefano surname: Zona fullname: Zona, Stefano organization: University of Modena and Reggio Emilia, Metabolic Clinic, Infectious and Tropical Disease Unit, Policlinico Hospital, Modena, Italy – sequence: 3 givenname: Giovanni surname: Targher fullname: Targher, Giovanni organization: Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy – sequence: 4 givenname: Dante surname: Romagnoli fullname: Romagnoli, Dante organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy – sequence: 5 givenname: Enrica surname: Baldelli fullname: Baldelli, Enrica organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy – sequence: 6 givenname: Fabio surname: Nascimbeni fullname: Nascimbeni, Fabio organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy – sequence: 7 givenname: Alberto surname: Roverato fullname: Roverato, Alberto organization: Department of Statistics, University of Bologna, Bologna, Italy – sequence: 8 givenname: Giovanni surname: Guaraldi fullname: Guaraldi, Giovanni organization: University of Modena and Reggio Emilia, Metabolic Clinic, Infectious and Tropical Disease Unit, Policlinico Hospital, Modena, Italy – sequence: 9 givenname: Amedeo surname: Lonardo fullname: Lonardo, Amedeo organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26667191$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9zEyEcxRmnjk2rB_8Bh6MeNoVd9tdROzWtE-voqD0yLHwxtLuQAknc_80_rqRJenCUCwN83gPeO0FH1llA6DUlU5rG2e2vxZQWecWeoQlljGS0ZtURmpCGlllb0PYYnYRwSwhhpC5foOO8qqqatnSC_lw7K3rpFq43EmsR44h7swaPlQkgAmATsAjBSSMiKLwxcYGFxaIfXIg4bpx2vcLGSr-lFfYm3GGntztGgU3IuAScJzvRQYRkZhUeIIru8cYwWuXdAFN8sd7yErBOayzSSYgwiJggD2sDmydlJtKTx2DCS_Rciz7Aq_18in58vPh-fpnNv8yuzt_PM1m0DcsgJSNVK0hDWJUzUkDBdCE6IqQs66qlbUfyuqy01LTJy64lWqq8YxqaSukuL07R253v0rv7FYTIBxMk9L2w4FaB07opa0ZITRL6Zo-uugEUX3ozCD_yQ-IJONsB0rsQPGguTUy_dDZ6YXpOCd92ylOn_LHTpHj3l-Jg-i92774xPYz_B_mn2eVBke0UJsX9-0kh_B2v6qIu-c31jH_4_JXetN9-8nnxAHZXw4I |
| CitedBy_id | crossref_primary_10_1002_jcla_24937 crossref_primary_10_1016_j_bpsgos_2025_100488 crossref_primary_10_1039_C8FO01615A crossref_primary_10_3389_fendo_2025_1516187 crossref_primary_10_3390_nu13051442 crossref_primary_10_1093_inthealth_ihy027 crossref_primary_10_1016_j_intimp_2020_107173 crossref_primary_10_1038_s41598_024_79842_w crossref_primary_10_3390_biomedicines11041097 crossref_primary_10_38109_2075_082X_2025_2_19_24 crossref_primary_10_1139_facets_2023_0146 crossref_primary_10_1111_liv_13185 crossref_primary_10_1111_jdi_12930 crossref_primary_10_1016_j_heliyon_2023_e16616 crossref_primary_10_1097_MD_0000000000024743 crossref_primary_10_31146_1682_8658_ecg_214_6_53_60 crossref_primary_10_1111_apt_15580 crossref_primary_10_3390_ijms17030355 crossref_primary_10_7759_cureus_49286 crossref_primary_10_4158_EP_2018_0098 crossref_primary_10_1177_1742271X221122585 crossref_primary_10_1016_j_pcl_2024_06_008 crossref_primary_10_3389_fgene_2019_01007 crossref_primary_10_1016_j_jhep_2016_05_013 crossref_primary_10_1155_2020_6638306 crossref_primary_10_1371_journal_pone_0262715 crossref_primary_10_3389_fnut_2025_1518082 crossref_primary_10_1016_j_dld_2017_01_147 crossref_primary_10_1038_s41430_021_00891_9 crossref_primary_10_1210_jc_2018_00306 crossref_primary_10_1038_s41598_020_62609_4 crossref_primary_10_7759_cureus_17321 crossref_primary_10_1016_j_dld_2021_02_003 crossref_primary_10_1128_msystems_00585_24 crossref_primary_10_3390_nu15040834 crossref_primary_10_3389_fimmu_2025_1589255 crossref_primary_10_1126_scitranslmed_aay0284 crossref_primary_10_1515_hmbci_2018_0047 crossref_primary_10_1136_bmjopen_2019_031420 crossref_primary_10_1016_j_jcjd_2018_02_002 crossref_primary_10_3390_ijms17101620 crossref_primary_10_1016_j_nut_2020_111080 crossref_primary_10_3390_diagnostics15162045 crossref_primary_10_1148_rg_240048 crossref_primary_10_3390_nu15092153 crossref_primary_10_3390_diagnostics12071753 crossref_primary_10_3390_nu11112601 crossref_primary_10_1111_liv_13397 crossref_primary_10_1016_j_cld_2017_08_010 crossref_primary_10_1080_17512433_2017_1365599 crossref_primary_10_1210_en_2017_00872 crossref_primary_10_1097_MD_0000000000015940 crossref_primary_10_1007_s11739_023_03524_0 crossref_primary_10_1016_j_fnutr_2025_100008 crossref_primary_10_1111_jgh_16589 crossref_primary_10_3390_ijms22084156 crossref_primary_10_1038_s41390_021_01666_5 crossref_primary_10_3389_fendo_2022_1017448 crossref_primary_10_1016_j_dld_2020_08_021 crossref_primary_10_3390_jcm10030492 crossref_primary_10_1186_s43066_025_00434_y crossref_primary_10_1016_j_dld_2018_03_029 crossref_primary_10_1371_journal_pone_0158710 crossref_primary_10_1136_bmjgast_2024_001466 crossref_primary_10_1161_CIR_0000000000000659 crossref_primary_10_1186_s12872_020_01826_1 crossref_primary_10_3390_nu11122871 crossref_primary_10_1016_j_jep_2021_114056 crossref_primary_10_1016_j_numecd_2023_05_018 crossref_primary_10_3233_CBM_170157 crossref_primary_10_1186_s12889_025_23576_5 crossref_primary_10_1007_s12325_018_0670_8 crossref_primary_10_1016_j_annepidem_2021_07_005 crossref_primary_10_1016_j_rgmxen_2020_04_008 crossref_primary_10_1186_s12986_017_0206_2 crossref_primary_10_1371_journal_pone_0174291 crossref_primary_10_1177_1756283X17725977 crossref_primary_10_3389_fendo_2023_1252774 crossref_primary_10_3390_ijms21124337 crossref_primary_10_4093_dmj_2019_0011 crossref_primary_10_1183_13993003_00546_2017 crossref_primary_10_3390_jcm8122157 crossref_primary_10_1097_MEG_0000000000003076 crossref_primary_10_1590_1806_9282_62_09_872 crossref_primary_10_1016_j_molmet_2021_101178 crossref_primary_10_2174_1874467215666220829102020 crossref_primary_10_3748_wjg_v29_i4_597 crossref_primary_10_1055_a_1957_5671 crossref_primary_10_1007_s13300_020_00794_1 crossref_primary_10_1177_2050312120933804 crossref_primary_10_1007_s12072_021_10209_3 crossref_primary_10_2147_DMSO_S350426 crossref_primary_10_2337_dbi17_0013 crossref_primary_10_1186_s13098_020_00558_8 crossref_primary_10_1016_j_biopha_2024_117184 crossref_primary_10_1186_s12933_020_01161_x crossref_primary_10_1161_CIR_0000000000000757 crossref_primary_10_3390_agriculture13020249 crossref_primary_10_1186_s12986_017_0219_x crossref_primary_10_1007_s13410_024_01365_x crossref_primary_10_4155_fmc_2019_0003 crossref_primary_10_1097_XCE_0000000000000126 crossref_primary_10_3390_life14101327 crossref_primary_10_3390_life12122072 crossref_primary_10_1038_s41598_021_92918_1 crossref_primary_10_1016_j_metabol_2020_154183 crossref_primary_10_1038_s41598_024_81663_w crossref_primary_10_1002_hep_29052 crossref_primary_10_3390_jcm10081695 crossref_primary_10_1016_j_atherosclerosis_2017_01_008 crossref_primary_10_1111_jcmm_13877 crossref_primary_10_1155_2022_5180242 crossref_primary_10_1080_17474124_2022_2137488 crossref_primary_10_1016_j_orcp_2017_12_003 crossref_primary_10_1016_j_clinbiochem_2018_11_011 crossref_primary_10_1016_j_jff_2020_104014 crossref_primary_10_1038_s41366_018_0076_3 crossref_primary_10_1016_j_bbalip_2021_159023 crossref_primary_10_1007_s12325_016_0306_9 crossref_primary_10_3390_ijms22116110 crossref_primary_10_1016_j_jhep_2018_09_013 crossref_primary_10_3389_fendo_2022_1041616 crossref_primary_10_1177_0049475520962742 crossref_primary_10_3390_nu10050630 crossref_primary_10_1016_j_metabol_2016_06_009 crossref_primary_10_3748_wjg_v26_i28_4018 crossref_primary_10_1007_s10238_020_00636_1 crossref_primary_10_1002_ncp_10449 crossref_primary_10_1007_s11695_025_07906_5 crossref_primary_10_3390_nu17060937 crossref_primary_10_1007_s10620_024_08309_9 crossref_primary_10_1002_hep_31018 crossref_primary_10_1002_jgf2_723 crossref_primary_10_1186_s12944_016_0358_5 crossref_primary_10_2337_db18_1048 crossref_primary_10_3390_ijms21165888 crossref_primary_10_1186_s13098_018_0370_1 crossref_primary_10_1017_S0029665121003815 crossref_primary_10_2147_DMSO_S518292 crossref_primary_10_1111_andr_12979 crossref_primary_10_1007_s00592_018_1266_0 crossref_primary_10_1097_MD_0000000000039613 crossref_primary_10_1186_s12902_024_01820_0 crossref_primary_10_1186_s12986_016_0149_z crossref_primary_10_1097_HJH_0000000000001730 crossref_primary_10_3389_fphar_2019_00877 crossref_primary_10_31146_1682_8658_ecg_192_8_167_174 crossref_primary_10_1016_j_eprac_2022_03_010 crossref_primary_10_1371_journal_pone_0325305 crossref_primary_10_2147_DMSO_S358744 crossref_primary_10_3390_metabo15040280 crossref_primary_10_1002_ptr_8010 crossref_primary_10_1161_CIR_0000000000001123 crossref_primary_10_1111_liv_13221 crossref_primary_10_1093_jsxmed_qdae080 crossref_primary_10_1136_gutjnl_2017_313884 crossref_primary_10_1016_j_dld_2018_01_126 crossref_primary_10_3390_ijms22094459 crossref_primary_10_1186_s12986_018_0329_0 crossref_primary_10_1038_s41598_025_06723_1 crossref_primary_10_1210_clinem_dgac190 crossref_primary_10_3390_ijerph16173104 crossref_primary_10_1002_edm2_116 crossref_primary_10_1016_j_gastrohep_2022_12_002 crossref_primary_10_1016_j_rgmxen_2019_02_003 crossref_primary_10_1038_s41591_018_0104_9 crossref_primary_10_1016_j_jhep_2017_09_021 crossref_primary_10_1038_s41598_021_92292_y crossref_primary_10_3390_diseases5040023 crossref_primary_10_3390_ijerph17113902 crossref_primary_10_1016_j_atherosclerosis_2018_07_028 crossref_primary_10_1038_s41598_020_63803_0 crossref_primary_10_1002_hep4_1387 crossref_primary_10_1111_obr_13563 crossref_primary_10_3390_livers2010003 crossref_primary_10_1007_s00592_019_01374_x crossref_primary_10_7717_peerj_6273 crossref_primary_10_4239_wjd_v13_i9_668 crossref_primary_10_1016_j_mayocp_2021_08_021 crossref_primary_10_1186_s12902_023_01382_7 crossref_primary_10_1016_j_jacl_2016_09_007 crossref_primary_10_1080_21688370_2023_2289830 crossref_primary_10_1007_s00330_019_06480_6 crossref_primary_10_1111_liv_13329 crossref_primary_10_1016_j_cgh_2019_08_007 crossref_primary_10_4093_dmj_2019_0020 crossref_primary_10_1111_liv_14417 crossref_primary_10_1016_j_jhep_2023_03_040 crossref_primary_10_1097_CM9_0000000000001888 crossref_primary_10_1111_ijpo_70017 crossref_primary_10_1136_bmjopen_2018_025524 crossref_primary_10_1186_s12944_018_0913_3 crossref_primary_10_3390_jcm8050610 crossref_primary_10_3390_nu11030705 crossref_primary_10_1080_17474124_2020_1810563 crossref_primary_10_3390_ijerph16224334 crossref_primary_10_1080_17460441_2020_1811674 crossref_primary_10_3390_nu12082174 crossref_primary_10_3390_jcm8081202 crossref_primary_10_3390_diagnostics12102426 crossref_primary_10_1002_edm2_456 crossref_primary_10_1016_j_acthis_2021_151735 crossref_primary_10_1016_j_alcohol_2020_08_007 crossref_primary_10_3390_plants13141985 crossref_primary_10_1007_s11892_024_01558_y crossref_primary_10_1186_s12876_019_0972_6 crossref_primary_10_1016_j_clinre_2023_102163 crossref_primary_10_1210_clinem_dgad375 crossref_primary_10_1007_s40519_021_01287_1 crossref_primary_10_1016_j_jtcme_2020_02_004 crossref_primary_10_1177_10815589221141830 crossref_primary_10_2337_dc17_1902 crossref_primary_10_1177_20406223221083508 crossref_primary_10_3389_fendo_2023_1306134 crossref_primary_10_1016_j_ajg_2018_08_003 crossref_primary_10_1371_journal_pone_0224626 crossref_primary_10_1016_j_dld_2021_04_029 crossref_primary_10_1161_CIR_0000000000001209 crossref_primary_10_3390_biomedicines9101491 crossref_primary_10_1053_j_gastro_2020_02_020 crossref_primary_10_1111_liv_14116 crossref_primary_10_1016_j_sajb_2022_04_048 crossref_primary_10_3350_cmh_2021_0178 crossref_primary_10_1016_j_livres_2020_03_002 crossref_primary_10_1038_s41598_023_28751_5 crossref_primary_10_1111_jdi_13496 crossref_primary_10_1016_j_clnu_2024_04_004 crossref_primary_10_1155_2018_8490242 crossref_primary_10_3390_ijerph17082620 crossref_primary_10_1038_s41392_024_01951_9 crossref_primary_10_3390_biomedicines10020249 crossref_primary_10_1186_s12906_020_2835_7 crossref_primary_10_1111_liv_14562 crossref_primary_10_2147_DMSO_S337416 crossref_primary_10_1111_liv_15661 crossref_primary_10_1136_bmjopen_2016_011939 crossref_primary_10_1002_hep4_1068 crossref_primary_10_3390_diagnostics15101208 crossref_primary_10_1111_dom_13522 crossref_primary_10_3390_ijerph18105227 crossref_primary_10_1111_eci_70095 crossref_primary_10_1016_j_diabres_2024_111649 crossref_primary_10_1038_s41598_024_55282_4 crossref_primary_10_1016_j_heliyon_2023_e22007 crossref_primary_10_4103_wjtcm_wjtcm_1_25 crossref_primary_10_2147_DMSO_S314550 crossref_primary_10_4254_wjh_v16_i4_511 crossref_primary_10_1089_met_2018_0077 crossref_primary_10_1111_liv_13363 crossref_primary_10_1186_s12944_018_0824_3 crossref_primary_10_1007_s12325_020_01307_z crossref_primary_10_1039_D0FO02610G crossref_primary_10_1155_2021_5582813 crossref_primary_10_1111_jdi_13279 crossref_primary_10_1007_s00109_019_01765_1 crossref_primary_10_1136_bmjdrc_2018_000585 crossref_primary_10_1016_j_diabet_2019_12_007 crossref_primary_10_3390_nu14061307 crossref_primary_10_1136_bmjdrc_2018_000549 crossref_primary_10_1016_j_hermed_2020_100342 crossref_primary_10_1097_MD_0000000000007853 crossref_primary_10_1038_s41401_018_0016_8 crossref_primary_10_1111_eci_12988 crossref_primary_10_1177_8756479319834927 crossref_primary_10_1093_labmed_lmab118 crossref_primary_10_3389_fendo_2021_773342 crossref_primary_10_3748_wjg_v28_i27_3314 crossref_primary_10_1186_s12967_023_04367_1 crossref_primary_10_1080_00325481_2016_1242366 crossref_primary_10_3390_jcm11237213 crossref_primary_10_1016_j_clinre_2019_10_001 crossref_primary_10_1038_s41598_024_82513_5 crossref_primary_10_1111_jdi_13221 crossref_primary_10_1080_17512433_2017_1300059 crossref_primary_10_3892_ijmm_2024_5412 crossref_primary_10_3345_cep_2022_01312 crossref_primary_10_1016_j_expneurol_2021_113725 crossref_primary_10_37349_edd_2025_100586 crossref_primary_10_3390_jcm9051278 crossref_primary_10_3389_fendo_2023_1266692 crossref_primary_10_1111_dom_14322 crossref_primary_10_1002_dmrr_3452 crossref_primary_10_1111_jgh_13648 crossref_primary_10_1186_s12916_017_0901_x crossref_primary_10_1371_journal_pone_0289616 crossref_primary_10_3390_ijms20071660 crossref_primary_10_3390_jcm11102759 crossref_primary_10_37349_edd_2025_100590 crossref_primary_10_1111_liv_14807 crossref_primary_10_1371_journal_pone_0187502 crossref_primary_10_3390_genes13020315 crossref_primary_10_1111_ijpo_12624 crossref_primary_10_1186_s12933_025_02795_5 crossref_primary_10_3390_ijerph16193570 crossref_primary_10_1111_dom_14651 crossref_primary_10_1177_20406223221122478 crossref_primary_10_3390_ijms24043219 crossref_primary_10_1097_MD_0000000000020960 crossref_primary_10_1007_s12325_017_0556_1 crossref_primary_10_1016_j_tranon_2018_10_010 crossref_primary_10_1016_j_mgene_2018_07_006 crossref_primary_10_26599_FMH_2024_9420002 crossref_primary_10_1016_j_diabres_2022_109968 crossref_primary_10_1007_s12325_020_01281_6 crossref_primary_10_1371_journal_pone_0208736 crossref_primary_10_1016_j_numecd_2021_04_028 crossref_primary_10_1038_s41598_022_06205_8 crossref_primary_10_3350_cmh_2022_0336 crossref_primary_10_3390_biomedicines10102351 crossref_primary_10_1186_s12916_024_03315_0 crossref_primary_10_1016_j_diabet_2020_08_008 crossref_primary_10_1136_bmj_m4747 crossref_primary_10_1002_hep4_1529 crossref_primary_10_3390_diseases6040093 crossref_primary_10_1016_j_humgen_2022_201073 crossref_primary_10_1016_j_dld_2016_10_004 crossref_primary_10_1186_s13098_025_01796_4 crossref_primary_10_1016_j_ebiom_2016_05_021 crossref_primary_10_1016_j_jhep_2020_02_028 crossref_primary_10_1016_j_medcle_2022_05_009 crossref_primary_10_1016_j_transproceed_2019_04_062 crossref_primary_10_1111_hepr_12925 crossref_primary_10_3390_nu14245344 crossref_primary_10_1016_j_dld_2017_12_018 crossref_primary_10_1053_j_gastro_2020_01_052 crossref_primary_10_1186_s13098_023_01200_z crossref_primary_10_1371_journal_pone_0221524 crossref_primary_10_1111_resp_13127 crossref_primary_10_1111_liv_13413 crossref_primary_10_1002_ctd2_9 crossref_primary_10_1111_jgh_15877 crossref_primary_10_3389_fnut_2021_653918 crossref_primary_10_2147_DMSO_S443329 crossref_primary_10_1016_j_gastre_2022_12_010 crossref_primary_10_1038_s41598_021_95546_x crossref_primary_10_3390_metabo14010040 crossref_primary_10_1038_srep27034 crossref_primary_10_1186_s12944_022_01771_2 crossref_primary_10_3390_ijms20092215 crossref_primary_10_1136_bmjdrc_2016_000296 crossref_primary_10_1002_lipd_12453 crossref_primary_10_1016_j_scispo_2020_03_003 crossref_primary_10_1080_17512433_2023_2259306 crossref_primary_10_1161_CIR_0000000000001052 crossref_primary_10_1016_j_jceh_2024_101409 crossref_primary_10_1080_17474124_2019_1649981 crossref_primary_10_1155_2018_2548154 crossref_primary_10_1038_srep44844 crossref_primary_10_4330_wjc_v16_i10_580 crossref_primary_10_1515_abm_2018_0026 crossref_primary_10_1002_med_21515 crossref_primary_10_1080_17474124_2018_1415756 crossref_primary_10_2337_dc19_1483 crossref_primary_10_3390_pharmacy11050151 crossref_primary_10_2147_JHC_S392051 crossref_primary_10_1111_1751_2980_12685 crossref_primary_10_1186_s12933_025_02793_7 crossref_primary_10_1016_j_numecd_2021_05_022 crossref_primary_10_1371_journal_pone_0220659 crossref_primary_10_1016_j_dsx_2021_03_007 crossref_primary_10_1111_liv_13994 crossref_primary_10_3389_fphar_2019_00604 crossref_primary_10_1089_met_2019_0107 crossref_primary_10_1002_jgm_3160 crossref_primary_10_3390_jcm10061161 crossref_primary_10_1111_dom_15304 crossref_primary_10_3390_medicina58010004 crossref_primary_10_1016_j_numecd_2023_08_005 crossref_primary_10_1007_s11606_020_06426_5 crossref_primary_10_3389_fmed_2024_1418364 crossref_primary_10_1111_jgh_13434 crossref_primary_10_1007_s11033_022_08108_3 crossref_primary_10_1016_j_phytol_2022_06_005 crossref_primary_10_1111_jgh_15850 crossref_primary_10_1097_HEP_0000000000000323 crossref_primary_10_1186_s12902_022_01042_2 crossref_primary_10_1097_RCT_0000000000001521 crossref_primary_10_3389_fnut_2023_1166244 crossref_primary_10_1186_s12967_022_03495_4 crossref_primary_10_1136_gutjnl_2020_322572 crossref_primary_10_1371_journal_pone_0198327 crossref_primary_10_3389_fendo_2022_815995 crossref_primary_10_3390_ph11040121 crossref_primary_10_3390_nu14173459 crossref_primary_10_4254_wjh_v14_i8_1633 crossref_primary_10_1016_j_diabres_2020_108385 crossref_primary_10_1016_j_diabres_2025_112008 crossref_primary_10_1038_s41598_023_42422_5 crossref_primary_10_1155_2020_3920196 crossref_primary_10_3390_ijms232416226 crossref_primary_10_1080_13685538_2020_1867094 crossref_primary_10_4239_wjd_v12_i9_1479 crossref_primary_10_1210_clinem_dgaa583 crossref_primary_10_1371_journal_pone_0249221 crossref_primary_10_1111_jgh_14105 crossref_primary_10_1186_s12876_022_02619_w crossref_primary_10_1136_bmjopen_2016_013781 crossref_primary_10_3389_fnut_2024_1478194 crossref_primary_10_4093_dmj_2023_0350 crossref_primary_10_1007_s12072_023_10620_y crossref_primary_10_1186_s12944_023_01772_9 crossref_primary_10_1161_CIR_0000000000000950 crossref_primary_10_1186_s43066_025_00452_w crossref_primary_10_1002_hep_29889 crossref_primary_10_1039_D2FO03308A crossref_primary_10_1017_S000711451800137X crossref_primary_10_1186_s12967_023_04543_3 crossref_primary_10_1210_clinem_dgaa575 crossref_primary_10_1186_s12876_022_02550_0 crossref_primary_10_3390_biomedicines9010093 crossref_primary_10_1111_dme_14522 crossref_primary_10_3390_ijms22052350 crossref_primary_10_1016_j_aohep_2024_101759 crossref_primary_10_1016_j_metabol_2017_04_003 crossref_primary_10_3390_jcdd9120419 crossref_primary_10_1016_S2468_1253_19_30173_6 crossref_primary_10_3390_ph17030369 crossref_primary_10_3389_fmed_2023_1216412 crossref_primary_10_1183_13993003_01923_2016 crossref_primary_10_3390_metabo13040517 crossref_primary_10_1016_j_cger_2020_04_010 crossref_primary_10_1038_s41598_023_45100_8 crossref_primary_10_1194_jlr_P088997 crossref_primary_10_3390_metabo10110465 crossref_primary_10_1097_HC9_0000000000000297 crossref_primary_10_3748_wjg_v22_i44_9674 crossref_primary_10_1016_j_aohep_2023_101106 crossref_primary_10_3389_ti_2022_10443 crossref_primary_10_1007_s11517_025_03355_5 crossref_primary_10_1016_j_pcd_2023_06_003 crossref_primary_10_1016_j_medcli_2021_12_003 crossref_primary_10_1210_clinem_dgaa112 crossref_primary_10_1016_j_gastha_2022_02_002 crossref_primary_10_1038_s41467_024_48618_1 crossref_primary_10_3390_cells10112978 crossref_primary_10_3390_jcm7110458 crossref_primary_10_1016_j_acra_2019_04_001 crossref_primary_10_3389_fphar_2025_1594278 crossref_primary_10_3390_gastroent15040071 crossref_primary_10_1007_s00253_023_12912_7 crossref_primary_10_1097_MEG_0000000000001967 crossref_primary_10_1016_j_diabres_2017_10_019 crossref_primary_10_3390_ijms17030281 crossref_primary_10_1177_03000605211047074 crossref_primary_10_2147_DMSO_S291595 crossref_primary_10_3390_diagnostics11010098 crossref_primary_10_3390_jcm10050924 crossref_primary_10_3390_nu14010103 crossref_primary_10_3748_wjg_v23_i36_6571 crossref_primary_10_1016_j_jep_2020_112556 crossref_primary_10_3390_ijms21061907 crossref_primary_10_3390_ijms25084397 crossref_primary_10_1002_dmrr_3386 crossref_primary_10_1038_s41598_024_82116_0 crossref_primary_10_1111_jgh_14266 crossref_primary_10_3390_ijms20081948 crossref_primary_10_1016_j_jceh_2024_101371 crossref_primary_10_3390_nu15102252 crossref_primary_10_1016_j_biopha_2022_113261 crossref_primary_10_1186_s12944_022_01752_5 crossref_primary_10_3390_ijms22063062 crossref_primary_10_2174_1381612828666221006123144 crossref_primary_10_1002_dmrr_3254 crossref_primary_10_1080_17474124_2020_1802244 crossref_primary_10_1139_apnm_2018_0729 crossref_primary_10_1111_jgh_14011 crossref_primary_10_3390_life13091881 crossref_primary_10_14309_ajg_0000000000000058 crossref_primary_10_1097_MEG_0000000000000736 crossref_primary_10_1186_s12876_019_0958_4 crossref_primary_10_3390_ijms17020217 crossref_primary_10_1159_000538765 crossref_primary_10_3390_cells9051214 crossref_primary_10_1016_j_pcd_2020_02_011 crossref_primary_10_2174_1381612826666200417142444 crossref_primary_10_3390_cancers13051110 crossref_primary_10_3390_nu14234946 crossref_primary_10_31083_j_ceog5109206 crossref_primary_10_1155_2021_6678755 crossref_primary_10_3748_wjg_v23_i36_6549 crossref_primary_10_1002_1348_9585_12109 crossref_primary_10_3389_fendo_2022_848937 crossref_primary_10_31146_1682_8658_ecg_230_10_178_187 crossref_primary_10_1136_bmjopen_2016_013543 crossref_primary_10_1159_000542914 crossref_primary_10_3390_ijms18091955 crossref_primary_10_1007_s11684_025_1133_7 crossref_primary_10_3390_life14020272 crossref_primary_10_1097_HEP_0000000000000286 crossref_primary_10_15171_apb_2018_012 crossref_primary_10_3350_cmh_2024_0431 crossref_primary_10_1097_QAD_0000000000001483 crossref_primary_10_2147_DMSO_S437865 crossref_primary_10_3390_nu9070774 |
| Cites_doi | 10.1111/j.1365-2796.2005.01572.x 10.1016/j.jclinepi.2007.11.008 10.1371/journal.pone.0096651 10.2188/jea.13.15 10.1002/sim.1186 10.1002/dmrr.890 10.1038/oby.2011.136 10.1016/j.dld.2014.09.020 10.7762/cnr.2013.2.1.67 10.1111/dme.12315 10.2337/diabetes.53.11.2855 10.1038/ajg.2013.349 10.1111/j.1440-1746.2012.07264.x 10.1111/liv.12200 10.1016/j.cca.2009.03.035 10.1016/j.atherosclerosis.2013.01.029 10.1210/jc.2013-1519 10.1371/journal.pone.0080596 10.1053/j.gastro.2008.09.018 10.1016/j.jhep.2013.05.044 10.1016/j.cgh.2015.01.027 10.2337/diacare.27.6.1427 10.1016/j.cmet.2015.09.023 10.1038/ajg.2009.229 10.1073/pnas.0904944106 10.1038/ajg.2009.67 10.3109/07853890.2010.518623 10.1111/j.1440-1746.2006.04781.x 10.1373/49.8.1358 10.1186/1758-5996-6-14 10.1111/j.1464-5491.2008.02410.x 10.1016/j.jhep.2014.12.012 10.2337/dc07-2159 10.2337/diacare.28.7.1757 10.1371/journal.pone.0096068 10.1111/j.1753-0407.2010.00111.x 10.2337/diabetes.51.6.1889 10.1111/dme.12187 10.1016/j.metabol.2007.10.015 10.1111/ijcp.12507 10.1586/17474124.2015.1007955 10.2337/dc07-2184 10.2337/dc07-0792 10.1038/oby.2010.90 10.2337/dc15-0140 10.2337/dc08-1870 10.1038/oby.2007.218 10.1002/hep.21327 10.1111/liv.12840 10.1002/14651858.CD003054.pub3 10.1111/j.1742-1241.2012.02959.x 10.4082/kjfm.2012.33.1.51 10.1111/dme.12345 10.1016/S1262-3636(07)70229-X 10.2337/diacare.28.11.2812 10.1016/j.diabet.2008.01.009 10.1016/j.atherosclerosis.2013.01.002 10.1073/pnas.1219456110 10.2337/dc07-0440 10.1194/jlr.M037952 10.1016/j.dld.2015.08.004. 10.1073/pnas.1113359108 10.2337/dc07-0106 10.2337/diacare.28.12.2913 10.1016/j.metabol.2009.08.024 10.1161/01.ATV.0000251993.20372.40 10.1007/s00125-003-1036-5 10.3346/jkms.2013.28.11.1603 10.2337/diabetes.53.10.2623 10.1111/liv.12851 10.1186/1471-230X-10-56 10.1089/met.2012.0147 10.1002/hep.26183 10.2337/diabetes.54.11.3140 |
| ContentType | Journal Article |
| Copyright | 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. |
| Copyright_xml | – notice: 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd – notice: 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1111/jgh.13264 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1440-1746 |
| EndPage | 944 |
| ExternalDocumentID | 26667191 10_1111_jgh_13264 JGH13264 ark_67375_WNG_BMQ1W9RV_L |
| Genre | article Meta-Analysis Systematic Review Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29K 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DTERQ DU5 EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO KMS LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOQ WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3984-e264cd9a080462403e34f3ab0acc576919b02756fcf1825b90fcd2b4fe86dfb23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 563 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375089100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0815-9319 1440-1746 |
| IngestDate | Thu Sep 04 19:27:59 EDT 2025 Mon Jul 21 06:07:37 EDT 2025 Sat Nov 29 03:01:50 EST 2025 Tue Nov 18 22:39:58 EST 2025 Sun Sep 21 06:17:06 EDT 2025 Sun Sep 21 06:16:50 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | AST NAFLD GGT Metabolic Syndrome Ultrasonography ALT Liver enzymes Diabetes |
| Language | English |
| License | 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3984-e264cd9a080462403e34f3ab0acc576919b02756fcf1825b90fcd2b4fe86dfb23 |
| Notes | ark:/67375/WNG-BMQ1W9RV-L istex:E38D9F7BC73B7936559F5F2EBF384C75BE867212 ArticleID:JGH13264 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
| OpenAccessLink | http://hdl.handle.net/11380/1102430 |
| PMID | 26667191 |
| PQID | 1785740070 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1785740070 pubmed_primary_26667191 crossref_citationtrail_10_1111_jgh_13264 crossref_primary_10_1111_jgh_13264 wiley_primary_10_1111_jgh_13264_JGH13264 istex_primary_ark_67375_WNG_BMQ1W9RV_L |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05 May 2016 2016-05-00 2016-May 20160501 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05 |
| PublicationDecade | 2010 |
| PublicationPlace | Australia |
| PublicationPlace_xml | – name: Australia |
| PublicationTitle | Journal of gastroenterology and hepatology |
| PublicationTitleAlternate | Journal of Gastroenterology and Hepatology |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 2015; 47: 181-90. Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care 2008; 31: 1138-43. Zhang T, Zhang Y, Zhang C et al. Prediction of metabolic syndrome by non-alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study. PLoS One 2014; 9: e96651. Nascimbeni F, Pais R, Bellentani S et al. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013; 59: 859-71. Lee DS, Evans JC, Robins SJ et al. Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 127-33. Fabbrini E, Magkos F, Mohammed BS et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 15430-5. Ryu S, Chang Y, Woo HY et al. Longitudinal increase in gamma-glutamyltransferase within the reference interval predicts metabolic syndrome in middle-aged Korean men. Metab. Clin. Exp. 2010; 59: 683-9. Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51: 1889-95. Kunutsor SK, Seddoh D. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship. PLoS One 2014; 9 e96068. Hanley AJ, WilliaMetS K, Festa A et al. Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004; 53: 2623-32. Schneider AL, Lazo M, Ndumele CE et al. Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study. Diabet. Med. 2013; 30: 926-33. Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am. J. Gastroenterol. 2009; 104: 1715-22. Zelber-Sagi S, Lotan R, Shibolet O et al. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013; 33: 1406-12. André P, Balkau B, Born C et al. Hepatic markers and development of type 2 diabetes in middle aged men and women: a three-year follow-up study. Diabetes Metab. 2005; 31: 542-50. Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 2007; 30: 2940-4. Arulanandan A, Ang B, Bettencourt R et al. Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2015; 13: 1513-20. Ekstedt M, Franzén LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-73. Suh YJ, Park SK, Choi JM, Ryoo JH. The clinical importance of serum γ-glutamyltransferase level as an early predictor of obesity development in Korean men. Atherosclerosis 2013; 227: 437-41. Ryoo JH, Choi JM, Moon SY et al. The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5-year's prospective cohort study. Atherosclerosis 2013; 227: 398-403. Ahn HR, Shin MH, Nam HS et al. The association between liver enzymes and risk of type 2 diabetes: the Namwon study. Diabetol. Metab. Syndr. 2014; 6: 14. Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 2009; 104: 861-7. Onat A, Can G, Örnek E, Çiçek G, Ayhan E, Doğan Y. Serum γ-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity (Silver Spring) 2012; 20: 842-8. Kasturiratne A, Weerasinghe S, Dassanayake AS et al. Influence of non-alcoholic fatty liver disease on the development of diabetes mellitus. J. Gastroenterol. Hepatol. 2013; 28: 142-7. Ballestri S, Romagnoli D, Nascimbeni F, Francica G, Lonardo A. Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev. Gastroenterol. Hepatol. 2015; 9: 603-27. Orozco LJ, Buchleitner AM, Gimenez-Perez G et al. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008 CD003054. Ryoo JH, Oh CM, Kim HS, Park SK, Choi JM. Clinical association between serum γ-glutamyltransferase levels and the development of insulin resistance in Korean men: a 5-year follow-up study. Diabet. Med. 2014; 31: 455-61. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21: 1539-58. Sung KC, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. J. Clin. Endocrinol. Metab. 2013; 98: 3637-43. Liu CF, Zhou WN, Fang NY. Gamma-glutamyltransferase levels and risk of metabolic syndrome: a meta-analysis of prospective cohort studies. Int. J. Clin. Pract. 2012; 66: 692-8. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 2005; 28: 2913-8. Sato KK, Hayashi T, Nakamura Y et al. Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 2008; 31: 1230-6. Goessling W, Massaro JM, Vasan RS, D'Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 2008; 135: 1935-44. Meex RC, Hoy AJ, Morris A et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 2015. DOI: 10.1016/j.cmet.2015.09.023. Non-alcoholic fatty liver disease (NAFLD) study group, dedicated to the memory of Prof. Paola Loria; Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH et al. Epidemiological modifiers of non-alcoholic fatty liver disease: focus on high-risk groups. Dig. Liver Dis. 2015 Aug 14. pii: S1590-8658(15)00568-X. doi:. DOI: 10.1016/j.dld.2015.08.004. [Epub ahead of print]. Balkau B, Lange C, Vol S, Fumeron F, Bonnet F, Group Study D.E.S.I.R. Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 2010; 10: 56. Kunutsor SK, Apekey TA, Seddoh D. Gamma-glutamyltransferase and metabolic syndrome risk: a systematic review and dose-response meta-analysis. Int. J. Clin. Pract. 2015; 69: 136-44. Bril F, Ortiz-Lopez C, Lomonaco R et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015; 35: 2139-46. Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 2009; 32: 741-50. von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 2008; 61: 344-9. Lee DH, Ha MH, Kim JH et al. Gammaglutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 2003; 46: 359-64. Hanley AJ, WilliaMetS K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 2005; 54: 3140-7. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011; 43: 617-49. Sattar N, Scherbakova O, Ford I et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 2004; 53: 2855-60. Chitraju C, Trötzmüller M, Hartler J et al. The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes. J. Lipid Res. 2013; 54: 2185-94. Liu Z, Que S, Ning H, Wang L, Peng T. Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta-analysis of prospective studies. PLoS One 2013; 8: e80596. Jo SK, Lee WY, Rhee EJ et al. Serum (gamma)-glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria. Clin. Chim. Acta 2009; 403: 234-40. Cicero AF, D'Addato S, Reggi A, Marchesini G, Borghi C, Heart Study B. Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study. Metab. Syndr. Relat. Disord. 2013; 11: 412-6. Cho NH, Jang HC, Choi SH et al. Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 2007; 30: 2566-8. Monami M, Bardini G, Lamanna C et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism 2008; 57: 387-92. Xu Y, Bi YF, Xu M et al. Cross-sectional and longitudinal association of serum alanine aminotransaminase and γ-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people. J. Diabetes 2011; 3: 38-47. Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 2007; 22: 1086-91. Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Association of serum gamma-glutamyl 2015; 35 2010; 10 2010; 59 2015; 38 2013; 28 2013; 2 2004; 27 2010; 18 2002; 51 2005; 258 2003; 13 2008; 34 2008; 31 2007; 30 2013; 8 2005; 28 2015; 47 2013; 59 2013; 11 2013; 54 2013; 98 2013; 57 2003; 46 2008; 25 2005; 31 2003; 49 2013; 110 2008; 61 2014; 9 2007; 22 2014; 6 2012; 66 2012; 20 2009; 403 2007; 27 2015; 13 2009; 25 2011 2013; 108 2013; 227 2008 2008; 57 2011; 3 2015; 9 2012; 33 2007; 15 2004; 53 2015; 69 2011; 108 2009; 32 2013; 33 2015; 62 2006; 44 2002; 21 2013; 30 2011; 43 2005; 54 2015 2008; 135 2009; 104 2014; 31 2009; 106 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_76_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_72_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
| References_xml | – reference: Oka R, Aizawa T, Yagi K, Hayashi K, Kawashiri M, Yamagishi M. Elevated liver enzymes are related to progression to impaired glucose tolerance in Japanese men. Diabet. Med. 2014; 31: 552-8. – reference: Kunutsor SK, Apekey TA, Seddoh D. Gamma-glutamyltransferase and metabolic syndrome risk: a systematic review and dose-response meta-analysis. Int. J. Clin. Pract. 2015; 69: 136-44. – reference: Lee DH, Jacobs DR Jr, Gross M et al. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Chem. 2003; 49: 1358-66. – reference: Hanley AJ, WilliaMetS K, Festa A et al. Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004; 53: 2623-32. – reference: Chitraju C, Trötzmüller M, Hartler J et al. The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes. J. Lipid Res. 2013; 54: 2185-94. – reference: Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21: 1539-58. – reference: Lee DS, Evans JC, Robins SJ et al. Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 127-33. – reference: Ming J, Xu S, Gao B et al. Non-alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five-year cohort study. Liver Int. 2015; 35: 2401-7. – reference: Nakanishi N, Suzuki K, Tatara K. Serum gamma-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care 2004; 27: 1427-32. – reference: Zhang T, Zhang Y, Zhang C et al. Prediction of metabolic syndrome by non-alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study. PLoS One 2014; 9: e96651. – reference: Schindhelm RK, Dekker JM, Nijpels G, Heine RJ, Diamant M. No independent association of alanine aminotransferase with risk of future type 2 diabetes in the Hoorn study. Diabetes Care 2005; 28: 2812. – reference: Byrne CD, Targher G. NAFLD: a multisystem disease. J. Hepatol. 2015; 62 (1 Suppl): S47-64. – reference: André P, Balkau B, Vol S, Charles MA, Eschwège E, DESIR Study Group. Gamma-glutamyltransferase activity and development of the metabolic syndrome (International Diabetes Federation Definition) in middle-aged men and women: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort. Diabetes Care 2007; 30: 2355-61. – reference: Cho NH, Jang HC, Choi SH et al. Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 2007; 30: 2566-8. – reference: Yamazaki H, Tsuboya T, Tsuji K, Dohke M, Maguchi H. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care 2015; 38: 1673-9. – reference: Liu Z, Que S, Ning H, Wang L, Peng T. Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta-analysis of prospective studies. PLoS One 2013; 8: e80596. – reference: Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults. Diabet. Med. 2008; 25: 476-81. – reference: Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 2007; 22: 1086-91. – reference: Lee JH, Um MH, Park YK. The association of metabolic syndrome and serum γ-glutamyl transpeptidase: a 4-year cohort study of 3,698 korean male workers. Clin. Nutr. Res. 2013; 2: 67-75. – reference: Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 2005; 28: 2913-8. – reference: Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011; 43: 617-49. – reference: Hanley AJ, WilliaMetS K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 2005; 54: 3140-7. – reference: Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Association of serum gamma-glutamyltransferase and alanine aminotransferase activities with risk of type 2 diabetes mellitus independent of fatty liver. Diabetes Metab. Res. Rev. 2009; 25: 64-9. – reference: Park SK, Seo MH, Shin HC, Ryoo JH. Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5-year prospective cohort study. Hepatology 2013; 57: 1378-83. – reference: Kasturiratne A, Weerasinghe S, Dassanayake AS et al. Influence of non-alcoholic fatty liver disease on the development of diabetes mellitus. J. Gastroenterol. Hepatol. 2013; 28: 142-7. – reference: Jo SK, Lee WY, Rhee EJ et al. Serum (gamma)-glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria. Clin. Chim. Acta 2009; 403: 234-40. – reference: Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring) 2010; 18: 1510-5. – reference: Non-alcoholic fatty liver disease (NAFLD) study group, dedicated to the memory of Prof. Paola Loria; Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH et al. Epidemiological modifiers of non-alcoholic fatty liver disease: focus on high-risk groups. Dig. Liver Dis. 2015 Aug 14. pii: S1590-8658(15)00568-X. doi:. DOI: 10.1016/j.dld.2015.08.004. [Epub ahead of print]. – reference: Zelber-Sagi S, Lotan R, Shibolet O et al. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013; 33: 1406-12. – reference: Bril F, Ortiz-Lopez C, Lomonaco R et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015; 35: 2139-46. – reference: Arulanandan A, Ang B, Bettencourt R et al. Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2015; 13: 1513-20. – reference: Ryoo JH, Choi JM, Moon SY et al. The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5-year's prospective cohort study. Atherosclerosis 2013; 227: 398-403. – reference: von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 2008; 61: 344-9. – reference: Goessling W, Massaro JM, Vasan RS, D'Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 2008; 135: 1935-44. – reference: Kunutsor SK, Seddoh D. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship. PLoS One 2014; 9 e96068. – reference: Cantley JL, Yoshimura T, Camporez JP et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 1869-74. – reference: Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 2007; 30: 2940-4. – reference: Nannipieri M, Gonzales C, Baldi S et al. Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care 2005; 28: 1757-62. – reference: Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care 2008; 31: 1138-43. – reference: Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51: 1889-95. – reference: Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 2009; 32: 741-50. – reference: Fabbrini E, Magkos F, Mohammed BS et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 15430-5. – reference: Sung KC, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. J. Clin. Endocrinol. Metab. 2013; 98: 3637-43. – reference: Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 2015; 47: 181-90. – reference: Chun H, Park SK, Ryoo JH. Association of serum γ-glutamyltransferase level and incident prehypertension in Korean men. J. Korean Med. Sci. 2013; 28: 1603-8. – reference: Sato KK, Hayashi T, Nakamura Y et al. Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 2008; 31: 1230-6. – reference: Lee DH, Ha MH, Kim JH et al. Gammaglutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 2003; 46: 359-64. – reference: Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am. J. Gastroenterol. 2009; 104: 1715-22. – reference: Ahn HR, Shin MH, Nam HS et al. The association between liver enzymes and risk of type 2 diabetes: the Namwon study. Diabetol. Metab. Syndr. 2014; 6: 14. – reference: Jiamjarasrangsi W, Sangwatanaroj W, Lohsoonthorn V, Lertmaharit S. Increased alanine aminotransferase level and future risk of type 2 diabetes and impaired fasting glucose among the employees in a university hospital in Thailand. Diabetes Metab. 2008; 34: 283-9. – reference: Orozco LJ, Buchleitner AM, Gimenez-Perez G et al. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008 CD003054. – reference: Nascimbeni F, Pais R, Bellentani S et al. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013; 59: 859-71. – reference: Chang Y, Jung HS, Yun KE, Cho J, Cho YK, Ryu S. Cohort Study of Non-alcoholic Fatty Liver Disease, NAFLD fibrosis score, and the Risk of Incident Diabetes in a Korean population. Am. J. Gastroenterol. 2013; 108: 1861-8. – reference: Ryu S, Chang Y, Woo HY et al. Longitudinal increase in gamma-glutamyltransferase within the reference interval predicts metabolic syndrome in middle-aged Korean men. Metab. Clin. Exp. 2010; 59: 683-9. – reference: Onat A, Can G, Örnek E, Çiçek G, Ayhan E, Doğan Y. Serum γ-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity (Silver Spring) 2012; 20: 842-8. – reference: Ballestri S, Romagnoli D, Nascimbeni F, Francica G, Lonardo A. Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev. Gastroenterol. Hepatol. 2015; 9: 603-27. – reference: Meisinger C, Lowel H, Heier M, Schneider A, Thorand B. Serum γ-glutamyltransferase and risk of type 2 diabetes mellitus in men and women from the general population. J. Intern. Med. 2005; 258: 527-35. – reference: Okamoto M, Takeda Y, Yoda Y, Kobayashi K, Fujino MA, Yamagata Z. The association of fatty liver and diabetes risk. J. Epidemiol. 2003; 13: 15-21. – reference: Kumashiro N, Erion DM, Zhang D et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 16381-5. – reference: Ekstedt M, Franzén LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-73. – reference: Balkau B, Lange C, Vol S, Fumeron F, Bonnet F, Group Study D.E.S.I.R. Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 2010; 10: 56. – reference: Sattar N, Scherbakova O, Ford I et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 2004; 53: 2855-60. – reference: Cicero AF, D'Addato S, Reggi A, Marchesini G, Borghi C, Heart Study B. Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study. Metab. Syndr. Relat. Disord. 2013; 11: 412-6. – reference: Schneider AL, Lazo M, Ndumele CE et al. Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study. Diabet. Med. 2013; 30: 926-33. – reference: Ryoo JH, Oh CM, Kim HS, Park SK, Choi JM. Clinical association between serum γ-glutamyltransferase levels and the development of insulin resistance in Korean men: a 5-year follow-up study. Diabet. Med. 2014; 31: 455-61. – reference: Suh YJ, Park SK, Choi JM, Ryoo JH. The clinical importance of serum γ-glutamyltransferase level as an early predictor of obesity development in Korean men. Atherosclerosis 2013; 227: 437-41. – reference: Liu CF, Zhou WN, Fang NY. Gamma-glutamyltransferase levels and risk of metabolic syndrome: a meta-analysis of prospective cohort studies. Int. J. Clin. Pract. 2012; 66: 692-8. – reference: Suh BS. The association between serum gamma-glutamyltransferase within normal levels and metabolic syndrome in office workers: a 4-year follow-up study. Korean J. Fam. Med. 2012; 33: 51-8. – reference: Monami M, Bardini G, Lamanna C et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism 2008; 57: 387-92. – reference: Xu Y, Bi YF, Xu M et al. Cross-sectional and longitudinal association of serum alanine aminotransaminase and γ-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people. J. Diabetes 2011; 3: 38-47. – reference: Doi Y, Kubo M, Yonemoto K et al. Liver enzymes as a predictor for incident diabetes in a Japanese population: the Hisayama study. Obesity 2007; 15: 1841-50. – reference: Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 2009; 104: 861-7. – reference: André P, Balkau B, Born C et al. Hepatic markers and development of type 2 diabetes in middle aged men and women: a three-year follow-up study. Diabetes Metab. 2005; 31: 542-50. – reference: Meex RC, Hoy AJ, Morris A et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 2015. DOI: 10.1016/j.cmet.2015.09.023. – year: 2011 – volume: 9 start-page: 603 year: 2015 end-page: 27 article-title: Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications publication-title: Expert Rev. Gastroenterol. Hepatol. – volume: 108 start-page: 16381 year: 2011 end-page: 5 article-title: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 61 start-page: 344 year: 2008 end-page: 9 article-title: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies publication-title: J. Clin. Epidemiol. – volume: 110 start-page: 1869 year: 2013 end-page: 74 article-title: CGI‐58 knockdown sequesters diacylglycerols in lipid droplets/ER‐preventing diacylglycerol‐mediated hepatic insulin resistance publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 59 start-page: 683 year: 2010 end-page: 9 article-title: Longitudinal increase in gamma‐glutamyltransferase within the reference interval predicts metabolic syndrome in middle‐aged Korean men publication-title: Metab. Clin. Exp. – volume: 35 start-page: 2139 year: 2015 end-page: 46 article-title: Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients publication-title: Liver Int. – volume: 20 start-page: 842 year: 2012 end-page: 8 article-title: Serum γ‐glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease publication-title: Obesity (Silver Spring) – volume: 10 start-page: 56 year: 2010 article-title: Nine‐year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study publication-title: BMC Gastroenterol. – volume: 59 start-page: 859 year: 2013 end-page: 71 article-title: From NAFLD in clinical practice to answers from guidelines publication-title: J. Hepatol. – volume: 30 start-page: 2940 year: 2007 end-page: 4 article-title: Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle‐aged Japanese men publication-title: Diabetes Care – volume: 9 year: 2014 article-title: Alanine aminotransferase and risk of the metabolic syndrome: a linear dose–response relationship publication-title: PLoS One – volume: 3 start-page: 38 year: 2011 end-page: 47 article-title: Cross‐sectional and longitudinal association of serum alanine aminotransaminase and γ‐glutamyltransferase with metabolic syndrome in middle‐aged and elderly Chinese people publication-title: J. Diabetes – volume: 44 start-page: 865 year: 2006 end-page: 73 article-title: Long‐term follow‐up of patients with NAFLD and elevated liver enzymes publication-title: Hepatology – volume: 31 start-page: 542 year: 2005 end-page: 50 article-title: Hepatic markers and development of type 2 diabetes in middle aged men and women: a three‐year follow‐up study publication-title: Diabetes Metab. – volume: 30 start-page: 2355 year: 2007 end-page: 61 article-title: Gamma‐glutamyltransferase activity and development of the metabolic syndrome (International Diabetes Federation Definition) in middle‐aged men and women: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort publication-title: Diabetes Care – volume: 54 start-page: 3140 year: 2005 end-page: 7 article-title: Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study publication-title: Diabetes – volume: 13 start-page: 15 year: 2003 end-page: 21 article-title: The association of fatty liver and diabetes risk publication-title: J. Epidemiol. – volume: 57 start-page: 387 year: 2008 end-page: 92 article-title: Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study publication-title: Metabolism – volume: 54 start-page: 2185 year: 2013 end-page: 94 article-title: The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes publication-title: J. Lipid Res. – volume: 46 start-page: 359 year: 2003 end-page: 64 article-title: Gammaglutamyltransferase and diabetes—a 4 year follow‐up study publication-title: Diabetologia – volume: 28 start-page: 2913 year: 2005 end-page: 8 article-title: Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men publication-title: Diabetes Care – year: 2008 article-title: Exercise or exercise and diet for preventing type 2 diabetes mellitus publication-title: Cochrane Database Syst. Rev. – volume: 27 start-page: 1427 year: 2004 end-page: 32 article-title: Serum gamma‐glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle‐aged Japanese men publication-title: Diabetes Care – volume: 104 start-page: 1715 year: 2009 end-page: 22 article-title: Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population publication-title: Am. J. Gastroenterol. – volume: 227 start-page: 437 year: 2013 end-page: 41 article-title: The clinical importance of serum γ‐glutamyltransferase level as an early predictor of obesity development in Korean men publication-title: Atherosclerosis – volume: 53 start-page: 2855 year: 2004 end-page: 60 article-title: Elevated alanine aminotransferase predicts new‐onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C‐reactive protein in the west of Scotland coronary prevention study publication-title: Diabetes – volume: 49 start-page: 1358 year: 2003 end-page: 66 article-title: Gamma‐glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study publication-title: Clin. Chem. – volume: 104 start-page: 861 year: 2009 end-page: 7 article-title: NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven‐year follow‐up study publication-title: Am. J. Gastroenterol. – volume: 108 start-page: 1861 year: 2013 end-page: 8 article-title: Cohort Study of Non‐alcoholic Fatty Liver Disease, NAFLD fibrosis score, and the Risk of Incident Diabetes in a Korean population publication-title: Am. J. Gastroenterol. – volume: 28 start-page: 1603 year: 2013 end-page: 8 article-title: Association of serum γ‐glutamyltransferase level and incident prehypertension in Korean men publication-title: J. Korean Med. Sci. – volume: 6 start-page: 14 year: 2014 article-title: The association between liver enzymes and risk of type 2 diabetes: the Namwon study publication-title: Diabetol. Metab. Syndr. – volume: 22 start-page: 1086 year: 2007 end-page: 91 article-title: Effects of nonalcoholic fatty liver disease on the development of metabolic disorders publication-title: J. Gastroenterol. Hepatol. – volume: 403 start-page: 234 year: 2009 end-page: 40 article-title: Serum (gamma)‐glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria publication-title: Clin. Chim. Acta – volume: 15 start-page: 1841 year: 2007 end-page: 50 article-title: Liver enzymes as a predictor for incident diabetes in a Japanese population: the Hisayama study publication-title: Obesity – volume: 33 start-page: 51 year: 2012 end-page: 8 article-title: The association between serum gamma‐glutamyltransferase within normal levels and metabolic syndrome in office workers: a 4‐year follow‐up study publication-title: Korean J. Fam. Med. – volume: 51 start-page: 1889 year: 2002 end-page: 95 article-title: High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes publication-title: Diabetes – volume: 11 start-page: 412 year: 2013 end-page: 6 article-title: Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study publication-title: Metab. Syndr. Relat. Disord. – volume: 135 start-page: 1935 year: 2008 end-page: 44 article-title: Aminotransferase levels and 20‐year risk of metabolic syndrome, diabetes, and cardiovascular disease publication-title: Gastroenterology – volume: 21 start-page: 1539 year: 2002 end-page: 58 article-title: Quantifying heterogeneity in a meta‐analysis publication-title: Stat. Med. – volume: 258 start-page: 527 year: 2005 end-page: 35 article-title: Serum γ‐glutamyltransferase and risk of type 2 diabetes mellitus in men and women from the general population publication-title: J. Intern. Med. – volume: 31 start-page: 552 year: 2014 end-page: 8 article-title: Elevated liver enzymes are related to progression to impaired glucose tolerance in Japanese men publication-title: Diabet. Med. – volume: 25 start-page: 476 year: 2008 end-page: 81 article-title: Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults publication-title: Diabet. Med. – volume: 28 start-page: 2812 year: 2005 article-title: No independent association of alanine aminotransferase with risk of future type 2 diabetes in the Hoorn study publication-title: Diabetes Care – volume: 8 start-page: e80596 year: 2013 article-title: Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta‐analysis of prospective studies publication-title: PLoS One – volume: 31 start-page: 1230 year: 2008 end-page: 6 article-title: Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study publication-title: Diabetes Care – year: 2015 article-title: Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism publication-title: Cell Metab. – volume: 13 start-page: 1513 year: 2015 end-page: 20 article-title: Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis publication-title: Clin. Gastroenterol. Hepatol. – volume: 30 start-page: 2566 year: 2007 end-page: 8 article-title: Abnormal liver function test predicts type 2 diabetes: a community‐based prospective study publication-title: Diabetes Care – volume: 30 start-page: 926 year: 2013 end-page: 33 article-title: Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study publication-title: Diabet. Med. – volume: 57 start-page: 1378 year: 2013 end-page: 83 article-title: Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5‐year prospective cohort study publication-title: Hepatology – volume: 31 start-page: 1138 year: 2008 end-page: 43 article-title: Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)‐Potsdam Study publication-title: Diabetes Care – volume: 28 start-page: 1757 year: 2005 end-page: 62 article-title: Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study publication-title: Diabetes Care – volume: 27 start-page: 127 year: 2007 end-page: 33 article-title: Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 32 start-page: 741 year: 2009 end-page: 50 article-title: Alanine aminotransferase, gamma‐glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta‐analysis publication-title: Diabetes Care – volume: 43 start-page: 617 year: 2011 end-page: 49 article-title: Meta‐analysis: natural history of non‐alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non‐invasive tests for liver disease severity publication-title: Ann. Med. – volume: 18 start-page: 1510 year: 2010 end-page: 5 article-title: Increased whole‐body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction publication-title: Obesity (Silver Spring) – volume: 98 start-page: 3637 year: 2013 end-page: 43 article-title: Resolution of fatty liver and risk of incident diabetes publication-title: J. Clin. Endocrinol. Metab. – volume: 31 start-page: 455 year: 2014 end-page: 61 article-title: Clinical association between serum γ‐glutamyltransferase levels and the development of insulin resistance in Korean men: a 5‐year follow‐up study publication-title: Diabet. Med. – volume: 38 start-page: 1673 year: 2015 end-page: 9 article-title: Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus publication-title: Diabetes Care – volume: 69 start-page: 136 year: 2015 end-page: 44 article-title: Gamma‐glutamyltransferase and metabolic syndrome risk: a systematic review and dose–response meta‐analysis publication-title: Int. J. Clin. Pract. – volume: 34 start-page: 283 year: 2008 end-page: 9 article-title: Increased alanine aminotransferase level and future risk of type 2 diabetes and impaired fasting glucose among the employees in a university hospital in Thailand publication-title: Diabetes Metab. – volume: 227 start-page: 398 year: 2013 end-page: 403 article-title: The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5‐year's prospective cohort study publication-title: Atherosclerosis – volume: 25 start-page: 64 year: 2009 end-page: 9 article-title: Association of serum gamma‐glutamyltransferase and alanine aminotransferase activities with risk of type 2 diabetes mellitus independent of fatty liver publication-title: Diabetes Metab. Res. Rev. – volume: 62 start-page: S47 issue: 1 Suppl year: 2015 end-page: 64 article-title: NAFLD: a multisystem disease publication-title: J. Hepatol. – year: 2015 article-title: Epidemiological modifiers of non‐alcoholic fatty liver disease: focus on high‐risk groups publication-title: Dig. Liver Dis. – volume: 35 start-page: 2401 year: 2015 end-page: 7 article-title: Non‐alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five‐year cohort study publication-title: Liver Int. – volume: 47 start-page: 181 year: 2015 end-page: 90 article-title: Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome publication-title: Dig. Liver Dis. – volume: 28 start-page: 142 year: 2013 end-page: 7 article-title: Influence of non‐alcoholic fatty liver disease on the development of diabetes mellitus publication-title: J. Gastroenterol. Hepatol. – volume: 106 start-page: 15430 year: 2009 end-page: 5 article-title: Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 2623 year: 2004 end-page: 32 article-title: Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study publication-title: Diabetes – volume: 2 start-page: 67 year: 2013 end-page: 75 article-title: The association of metabolic syndrome and serum γ‐glutamyl transpeptidase: a 4‐year cohort study of 3,698 korean male workers publication-title: Clin. Nutr. Res. – volume: 33 start-page: 1406 year: 2013 end-page: 12 article-title: Non‐alcoholic fatty liver disease independently predicts prediabetes during a 7‐year prospective follow‐up publication-title: Liver Int. – volume: 66 start-page: 692 year: 2012 end-page: 8 article-title: Gamma‐glutamyltransferase levels and risk of metabolic syndrome: a meta‐analysis of prospective cohort studies publication-title: Int. J. Clin. Pract. – volume: 9 start-page: e96651 year: 2014 article-title: Prediction of metabolic syndrome by non‐alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study publication-title: PLoS One – ident: e_1_2_5_12_1 doi: 10.1111/j.1365-2796.2005.01572.x – ident: e_1_2_5_5_1 doi: 10.1016/j.jclinepi.2007.11.008 – ident: e_1_2_5_33_1 doi: 10.1371/journal.pone.0096651 – ident: e_1_2_5_19_1 doi: 10.2188/jea.13.15 – ident: e_1_2_5_6_1 doi: 10.1002/sim.1186 – ident: e_1_2_5_16_1 doi: 10.1002/dmrr.890 – ident: e_1_2_5_51_1 doi: 10.1038/oby.2011.136 – ident: e_1_2_5_2_1 doi: 10.1016/j.dld.2014.09.020 – ident: e_1_2_5_54_1 doi: 10.7762/cnr.2013.2.1.67 – ident: e_1_2_5_55_1 doi: 10.1111/dme.12315 – ident: e_1_2_5_35_1 doi: 10.2337/diabetes.53.11.2855 – ident: e_1_2_5_24_1 doi: 10.1038/ajg.2013.349 – ident: e_1_2_5_25_1 doi: 10.1111/j.1440-1746.2012.07264.x – ident: e_1_2_5_26_1 doi: 10.1111/liv.12200 – ident: e_1_2_5_29_1 doi: 10.1016/j.cca.2009.03.035 – ident: e_1_2_5_53_1 doi: 10.1016/j.atherosclerosis.2013.01.029 – ident: e_1_2_5_75_1 doi: 10.1210/jc.2013-1519 – ident: e_1_2_5_58_1 doi: 10.1371/journal.pone.0080596 – ident: e_1_2_5_41_1 doi: 10.1053/j.gastro.2008.09.018 – ident: e_1_2_5_3_1 doi: 10.1016/j.jhep.2013.05.044 – ident: e_1_2_5_64_1 doi: 10.1016/j.cgh.2015.01.027 – ident: e_1_2_5_17_1 doi: 10.2337/diacare.27.6.1427 – ident: e_1_2_5_73_1 doi: 10.1016/j.cmet.2015.09.023 – ident: e_1_2_5_49_1 doi: 10.1038/ajg.2009.229 – ident: e_1_2_5_67_1 doi: 10.1073/pnas.0904944106 – ident: e_1_2_5_9_1 doi: 10.1038/ajg.2009.67 – ident: e_1_2_5_4_1 doi: 10.3109/07853890.2010.518623 – ident: e_1_2_5_20_1 doi: 10.1111/j.1440-1746.2006.04781.x – ident: e_1_2_5_46_1 doi: 10.1373/49.8.1358 – ident: e_1_2_5_18_1 doi: 10.1186/1758-5996-6-14 – ident: e_1_2_5_22_1 doi: 10.1111/j.1464-5491.2008.02410.x – ident: e_1_2_5_72_1 doi: 10.1016/j.jhep.2014.12.012 – ident: e_1_2_5_42_1 doi: 10.2337/dc07-2159 – ident: e_1_2_5_38_1 doi: 10.2337/diacare.28.7.1757 – ident: e_1_2_5_59_1 doi: 10.1371/journal.pone.0096068 – ident: e_1_2_5_30_1 doi: 10.1111/j.1753-0407.2010.00111.x – ident: e_1_2_5_34_1 doi: 10.2337/diabetes.51.6.1889 – ident: e_1_2_5_45_1 doi: 10.1111/dme.12187 – ident: e_1_2_5_15_1 doi: 10.1016/j.metabol.2007.10.015 – ident: e_1_2_5_61_1 doi: 10.1111/ijcp.12507 – ident: e_1_2_5_62_1 doi: 10.1586/17474124.2015.1007955 – ident: e_1_2_5_14_1 doi: 10.2337/dc07-2184 – ident: e_1_2_5_21_1 doi: 10.2337/dc07-0792 – ident: e_1_2_5_68_1 doi: 10.1038/oby.2010.90 – ident: e_1_2_5_74_1 doi: 10.2337/dc15-0140 – ident: e_1_2_5_43_1 doi: 10.2337/dc08-1870 – ident: e_1_2_5_40_1 doi: 10.1038/oby.2007.218 – ident: e_1_2_5_66_1 doi: 10.1002/hep.21327 – ident: e_1_2_5_63_1 doi: 10.1111/liv.12840 – ident: e_1_2_5_76_1 doi: 10.1002/14651858.CD003054.pub3 – ident: e_1_2_5_60_1 doi: 10.1111/j.1742-1241.2012.02959.x – ident: e_1_2_5_31_1 doi: 10.4082/kjfm.2012.33.1.51 – ident: e_1_2_5_56_1 doi: 10.1111/dme.12345 – ident: e_1_2_5_11_1 doi: 10.1016/S1262-3636(07)70229-X – ident: e_1_2_5_7_1 – ident: e_1_2_5_37_1 doi: 10.2337/diacare.28.11.2812 – ident: e_1_2_5_8_1 doi: 10.1016/j.diabet.2008.01.009 – ident: e_1_2_5_32_1 doi: 10.1016/j.atherosclerosis.2013.01.002 – ident: e_1_2_5_70_1 doi: 10.1073/pnas.1219456110 – ident: e_1_2_5_28_1 doi: 10.2337/dc07-0440 – ident: e_1_2_5_71_1 doi: 10.1194/jlr.M037952 – ident: e_1_2_5_65_1 doi: 10.1016/j.dld.2015.08.004. – ident: e_1_2_5_69_1 doi: 10.1073/pnas.1113359108 – ident: e_1_2_5_39_1 doi: 10.2337/dc07-0106 – ident: e_1_2_5_13_1 doi: 10.2337/diacare.28.12.2913 – ident: e_1_2_5_50_1 doi: 10.1016/j.metabol.2009.08.024 – ident: e_1_2_5_48_1 doi: 10.1161/01.ATV.0000251993.20372.40 – ident: e_1_2_5_10_1 doi: 10.1007/s00125-003-1036-5 – ident: e_1_2_5_52_1 doi: 10.3346/jkms.2013.28.11.1603 – ident: e_1_2_5_36_1 doi: 10.2337/diabetes.53.10.2623 – ident: e_1_2_5_27_1 doi: 10.1111/liv.12851 – ident: e_1_2_5_44_1 doi: 10.1186/1471-230X-10-56 – ident: e_1_2_5_57_1 doi: 10.1089/met.2012.0147 – ident: e_1_2_5_23_1 doi: 10.1002/hep.26183 – ident: e_1_2_5_47_1 doi: 10.2337/diabetes.54.11.3140 |
| SSID | ssj0004075 |
| Score | 2.6439135 |
| SecondaryResourceType | review_article |
| Snippet | Background and Aim:
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver... The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 936 |
| SubjectTerms | Alanine Transaminase - blood ALT Aspartate Aminotransferases - blood AST Biomarkers - blood Chi-Square Distribution Clinical Enzyme Tests Diabetes Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - epidemiology gamma-Glutamyltransferase - blood GGT Humans Incidence Liver enzymes Metabolic Syndrome Metabolic Syndrome - diagnosis Metabolic Syndrome - epidemiology NAFLD Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - diagnostic imaging Non-alcoholic Fatty Liver Disease - epidemiology Prognosis Risk Assessment Risk Factors Time Factors Ultrasonography |
| Title | Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis |
| URI | https://api.istex.fr/ark:/67375/WNG-BMQ1W9RV-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.13264 https://www.ncbi.nlm.nih.gov/pubmed/26667191 https://www.proquest.com/docview/1785740070 |
| Volume | 31 |
| WOSCitedRecordID | wos000375089100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1440-1746 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004075 issn: 0815-9319 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB21uwjxwh26XKoBIcRLqs09Fk_cthXarqCidN8i27HbFduk2qRc3vgEvoiP4UuYya1UKhISb1E0Tpz4jD3jGZ8BeEKT4ViGUjoiEsqhCc84iSeNE4TWuBmtcELVlPnTeDZL5nPxbg2ed2dhGn6IfsONNaOer1nBpSr_VPLDoy1ypaJgHYYe4TYcwPD13mR_enYssuHZpUUvdARBrSUWqhN5usbnlqMh_9mvF9ma503Xeu2ZXPuvXl-Hq63JiS8ajNyANZPfhMu7bVD9FvycsTVeV8pdaLSyqr7hktM1sI3e4KJE2Q6jyZC3blHmKJfHRVlh9aWwxTLDRc4GaEkCnK6OheU7XLKURMjZRQ-7fV5qnOGxqQh__MaONGELuxKnyIdeUOIZzTQ2R2z6lr--_5Atncpt2J-8-fBqx2nLOjjaF0ngGPp6nQlJtmoQMR2g8QPrSzWWWpP3I1yhOJYaWW3J-QmVGFudeSqwJokyqzz_DgzyIjcbgF6m4tgKKX2TBcYKxckmhDc3CrXSiR3Bs250U91ynnPpjWXa-z6HR2k9HiN43IueNEQfFwk9rSHSS8jVJ86Mi8P0YLadvtx97x6IvY_pdASPOgylpK8chJG5KU7L1I2TMOZi9OMR3G3A1T-NjKUoJgeaul1j6O8dSd9u79QX9_5d9D5cIWsvarI1H8CgWp2ah3BJf64W5WoT1uN5stmq0G_9WSHr |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZKFwEv3JTlHBBCvKTaZHNZ4oVru0A2gqrXm2U7drvqNkGblOONn8Av4sfwS5jJVSoVCYm3KBonTvyNPTMef8PYE5wMRzKQ0uEhVw5OeMaJPWkcP7DGzXCF46qmzE-iNI339viHFfa8OwvT8EP0ATfSjHq-JgWngPSfWr5_sI6-VOifYwMfYYT4HrzenGwnJ-ciG6JdXPUChyPWWmahOpOna3xqPRrQr_16lrF52natF5_Jlf_r9lV2uTU64UWDkmtsxeTX2YVZu61-g_1MyR6va-XONVhZVd9gQQkb0O7fwLwE2Q6kyYCCtyBzkIujoqyg-lLYYpHBPCcTtEQBSliHwtIdKlqKIujuggddpBcbZ3BkKkQgvbGjTViHrsgp0LEXkHBCNA3NIZu-5a_vP2RLqHKTbU_ebL2aOm1hB0ePeew7Br9eZ1yiteqHRAhoxr4dSzWSWqP_w12uaDc1tNqi-xMoPrI685RvTRxmVnnjW2w1L3Jzm4GXqSiyXMqxyXxjuaJ0E0ScGwZa6dgO2bNueIVuWc-p-MZC9N7P_oGox2PIHveinxqqj7OEntYY6SXk8pBy46JA7KYb4uXso7vLN3dEMmSPOhAJ1FjahpG5KY5L4UZxEFE5-tGQrTXo6p-G5lIYoQuN3a5B9PeOiHcb0_rizr-LPmQXp1uzRCRv0_d32SW0_cImd_MeW62Wx-Y-O68_V_Ny-aDVpN9ppCTz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9RADLbKLqp4KTcsp0EI8ZJqc2ckXoCyLbCNSkWPt2jOdtVtUm1Sjjd-Ar-IH8MvwZOrVCoSEm9R5EkmGXtsj-3PAM9oMxzzkHOHRUw4tOFpJ_G4doLQaFeRhmOihsyfxmma7O-zrSV42dXCNPgQ_YGblYx6v7YCrk-U-VPKDw5XyZeKgkswDGwTmQEM17YnO9OzusgGaJe0Xugw4rUWWajO5OkGn9NHQ_trv15kbJ63XWvlM7n6f9O-Biut0YmvGi65Dks6vwHLm21Y_Sb8TK09XvfKnUk0vKq-4dwmbGAbv8FZibxdSK3QHt4iz5HPj4uywupLYYq5wlluTdCSCGzCOhbG3rFNS4mE3F30sDvppcEKj3VFHGjf2MEmrGLX5BRt2QtyPAOaxqbIph_56_sP3gKq3IKdydtPbzactrGDI32WBI6mr5eKcbJWg8gCAmo_MD4XYy4l-T_MZcJGUyMjDbk_oWBjI5UnAqOTSBnh-bdhkBe5vgvoKRHHhnHuaxVow4RNNyGOc6NQCpmYEbzoljeTLeq5bb4xz3rv5-Awq9djBE970pMG6uMiouc1j_QUfHFkc-PiMNtL17PXmx_dPba9m01H8KRjoowk1oZheK6L0zJz4ySMbTv68QjuNNzVP43MpSgmF5qmXTPR3yeSvV_fqC_u_TvpY1jeWptk03fph_twhUy_qEndfACDanGqH8Jl-bmalYtHrSD9BsD3JG4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonalcoholic+fatty+liver+disease+is+associated+with+an+almost+twofold+increased+risk+of+incident+type+2+diabetes+and+metabolic+syndrome.+Evidence+from+a+systematic+review+and+meta-analysis&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Ballestri%2C+Stefano&rft.au=Zona%2C+Stefano&rft.au=Targher%2C+Giovanni&rft.au=Romagnoli%2C+Dante&rft.date=2016-05-01&rft.eissn=1440-1746&rft.volume=31&rft.issue=5&rft.spage=936&rft_id=info:doi/10.1111%2Fjgh.13264&rft_id=info%3Apmid%2F26667191&rft.externalDocID=26667191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon |