Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis

Background and Aim: The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of gastroenterology and hepatology Jg. 31; H. 5; S. 936 - 944
Hauptverfasser: Ballestri, Stefano, Zona, Stefano, Targher, Giovanni, Romagnoli, Dante, Baldelli, Enrica, Nascimbeni, Fabio, Roverato, Alberto, Guaraldi, Giovanni, Lonardo, Amedeo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Australia Blackwell Publishing Ltd 01.05.2016
Schlagworte:
ISSN:0815-9319, 1440-1746, 1440-1746
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background and Aim: The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma‐glutamyltransferase [GGT]) or ultrasonography. Methods: Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta‐analysis. Results Overall, in a pooled population of 117020 patients (from 20 studies), who were followed‐up for a median period of 5 years (range: 3–14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80–2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43–1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71–2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76–1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed‐up for a median period of 4.5 years (range: 3–11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72–1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89–2.07) for GGT, and 3.22 (95% CI, 3.05–3.41) for ultrasonography, respectively. Conclusions: Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5‐year follow‐up.
AbstractList Background and Aim: The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma‐glutamyltransferase [GGT]) or ultrasonography. Methods: Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta‐analysis. Results Overall, in a pooled population of 117020 patients (from 20 studies), who were followed‐up for a median period of 5 years (range: 3–14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80–2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43–1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71–2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76–1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed‐up for a median period of 4.5 years (range: 3–11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72–1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89–2.07) for GGT, and 3.22 (95% CI, 3.05–3.41) for ultrasonography, respectively. Conclusions: Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5‐year follow‐up.
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography. Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis. Overall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively. Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up.
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography.BACKGROUND AND AIMThe magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is poorly known. We gauged the risk of developing T2D and MetS in patients with NAFLD diagnosed by either serum liver enzymes (aminotransferases or gamma-glutamyltransferase [GGT]) or ultrasonography.Pertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis.METHODSPertinent prospective studies were identified through extensive electronic database research, and studies fulfilling enrolment criteria were included in the meta-analysis.Overall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively.RESULTSOverall, in a pooled population of 117020 patients (from 20 studies), who were followed-up for a median period of 5 years (range: 3-14.7 years), NAFLD was associated with an increased risk of incident T2D with a pooled relative risk of 1.97 (95% confidence interval [CI], 1.80-2.15) for alanine aminotransferase, 1.58 (95% CI, 1.43-1.74) for aspartate aminotransferase, 1.86 (95% CI, 1.71-2.03) for GGT (last vs first quartile or quintile), and 1.86 (95% CI, 1.76-1.95) for ultrasonography, respectively. Overall, in a pooled population of 81411 patients (from eight studies) who were followed-up for a median period of 4.5 years (range: 3-11 years), NAFLD was associated with an increased risk of incident MetS with a pooled relative risk of 1.80 (95% CI, 1.72-1.89) for alanine aminotransferase (last vs first quartile or quintile), 1.98 (95% CI, 1.89-2.07) for GGT, and 3.22 (95% CI, 3.05-3.41) for ultrasonography, respectively.Nonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up.CONCLUSIONSNonalcoholic fatty liver disease, as diagnosed by either liver enzymes or ultrasonography, significantly increases the risk of incident T2D and MetS over a median 5-year follow-up.
Author Romagnoli, Dante
Lonardo, Amedeo
Baldelli, Enrica
Targher, Giovanni
Zona, Stefano
Ballestri, Stefano
Roverato, Alberto
Guaraldi, Giovanni
Nascimbeni, Fabio
Author_xml – sequence: 1
  givenname: Stefano
  surname: Ballestri
  fullname: Ballestri, Stefano
  email: stefanoballestri@tiscali.it
  organization: Azienda USL, Internal Medicine, Pavullo Hospital, Pavullo, Italy
– sequence: 2
  givenname: Stefano
  surname: Zona
  fullname: Zona, Stefano
  organization: University of Modena and Reggio Emilia, Metabolic Clinic, Infectious and Tropical Disease Unit, Policlinico Hospital, Modena, Italy
– sequence: 3
  givenname: Giovanni
  surname: Targher
  fullname: Targher, Giovanni
  organization: Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
– sequence: 4
  givenname: Dante
  surname: Romagnoli
  fullname: Romagnoli, Dante
  organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy
– sequence: 5
  givenname: Enrica
  surname: Baldelli
  fullname: Baldelli, Enrica
  organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy
– sequence: 6
  givenname: Fabio
  surname: Nascimbeni
  fullname: Nascimbeni, Fabio
  organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy
– sequence: 7
  givenname: Alberto
  surname: Roverato
  fullname: Roverato, Alberto
  organization: Department of Statistics, University of Bologna, Bologna, Italy
– sequence: 8
  givenname: Giovanni
  surname: Guaraldi
  fullname: Guaraldi, Giovanni
  organization: University of Modena and Reggio Emilia, Metabolic Clinic, Infectious and Tropical Disease Unit, Policlinico Hospital, Modena, Italy
– sequence: 9
  givenname: Amedeo
  surname: Lonardo
  fullname: Lonardo, Amedeo
  organization: Azienda USL, Outpatient Liver Clinic and Internal Medicine, NOCSAE, Modena, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26667191$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9zEyEcxRmnjk2rB_8Bh6MeNoVd9tdROzWtE-voqD0yLHwxtLuQAknc_80_rqRJenCUCwN83gPeO0FH1llA6DUlU5rG2e2vxZQWecWeoQlljGS0ZtURmpCGlllb0PYYnYRwSwhhpC5foOO8qqqatnSC_lw7K3rpFq43EmsR44h7swaPlQkgAmATsAjBSSMiKLwxcYGFxaIfXIg4bpx2vcLGSr-lFfYm3GGntztGgU3IuAScJzvRQYRkZhUeIIru8cYwWuXdAFN8sd7yErBOayzSSYgwiJggD2sDmydlJtKTx2DCS_Rciz7Aq_18in58vPh-fpnNv8yuzt_PM1m0DcsgJSNVK0hDWJUzUkDBdCE6IqQs66qlbUfyuqy01LTJy64lWqq8YxqaSukuL07R253v0rv7FYTIBxMk9L2w4FaB07opa0ZITRL6Zo-uugEUX3ozCD_yQ-IJONsB0rsQPGguTUy_dDZ6YXpOCd92ylOn_LHTpHj3l-Jg-i92774xPYz_B_mn2eVBke0UJsX9-0kh_B2v6qIu-c31jH_4_JXetN9-8nnxAHZXw4I
CitedBy_id crossref_primary_10_1002_jcla_24937
crossref_primary_10_1016_j_bpsgos_2025_100488
crossref_primary_10_1039_C8FO01615A
crossref_primary_10_3389_fendo_2025_1516187
crossref_primary_10_3390_nu13051442
crossref_primary_10_1093_inthealth_ihy027
crossref_primary_10_1016_j_intimp_2020_107173
crossref_primary_10_1038_s41598_024_79842_w
crossref_primary_10_3390_biomedicines11041097
crossref_primary_10_38109_2075_082X_2025_2_19_24
crossref_primary_10_1139_facets_2023_0146
crossref_primary_10_1111_liv_13185
crossref_primary_10_1111_jdi_12930
crossref_primary_10_1016_j_heliyon_2023_e16616
crossref_primary_10_1097_MD_0000000000024743
crossref_primary_10_31146_1682_8658_ecg_214_6_53_60
crossref_primary_10_1111_apt_15580
crossref_primary_10_3390_ijms17030355
crossref_primary_10_7759_cureus_49286
crossref_primary_10_4158_EP_2018_0098
crossref_primary_10_1177_1742271X221122585
crossref_primary_10_1016_j_pcl_2024_06_008
crossref_primary_10_3389_fgene_2019_01007
crossref_primary_10_1016_j_jhep_2016_05_013
crossref_primary_10_1155_2020_6638306
crossref_primary_10_1371_journal_pone_0262715
crossref_primary_10_3389_fnut_2025_1518082
crossref_primary_10_1016_j_dld_2017_01_147
crossref_primary_10_1038_s41430_021_00891_9
crossref_primary_10_1210_jc_2018_00306
crossref_primary_10_1038_s41598_020_62609_4
crossref_primary_10_7759_cureus_17321
crossref_primary_10_1016_j_dld_2021_02_003
crossref_primary_10_1128_msystems_00585_24
crossref_primary_10_3390_nu15040834
crossref_primary_10_3389_fimmu_2025_1589255
crossref_primary_10_1126_scitranslmed_aay0284
crossref_primary_10_1515_hmbci_2018_0047
crossref_primary_10_1136_bmjopen_2019_031420
crossref_primary_10_1016_j_jcjd_2018_02_002
crossref_primary_10_3390_ijms17101620
crossref_primary_10_1016_j_nut_2020_111080
crossref_primary_10_3390_diagnostics15162045
crossref_primary_10_1148_rg_240048
crossref_primary_10_3390_nu15092153
crossref_primary_10_3390_diagnostics12071753
crossref_primary_10_3390_nu11112601
crossref_primary_10_1111_liv_13397
crossref_primary_10_1016_j_cld_2017_08_010
crossref_primary_10_1080_17512433_2017_1365599
crossref_primary_10_1210_en_2017_00872
crossref_primary_10_1097_MD_0000000000015940
crossref_primary_10_1007_s11739_023_03524_0
crossref_primary_10_1016_j_fnutr_2025_100008
crossref_primary_10_1111_jgh_16589
crossref_primary_10_3390_ijms22084156
crossref_primary_10_1038_s41390_021_01666_5
crossref_primary_10_3389_fendo_2022_1017448
crossref_primary_10_1016_j_dld_2020_08_021
crossref_primary_10_3390_jcm10030492
crossref_primary_10_1186_s43066_025_00434_y
crossref_primary_10_1016_j_dld_2018_03_029
crossref_primary_10_1371_journal_pone_0158710
crossref_primary_10_1136_bmjgast_2024_001466
crossref_primary_10_1161_CIR_0000000000000659
crossref_primary_10_1186_s12872_020_01826_1
crossref_primary_10_3390_nu11122871
crossref_primary_10_1016_j_jep_2021_114056
crossref_primary_10_1016_j_numecd_2023_05_018
crossref_primary_10_3233_CBM_170157
crossref_primary_10_1186_s12889_025_23576_5
crossref_primary_10_1007_s12325_018_0670_8
crossref_primary_10_1016_j_annepidem_2021_07_005
crossref_primary_10_1016_j_rgmxen_2020_04_008
crossref_primary_10_1186_s12986_017_0206_2
crossref_primary_10_1371_journal_pone_0174291
crossref_primary_10_1177_1756283X17725977
crossref_primary_10_3389_fendo_2023_1252774
crossref_primary_10_3390_ijms21124337
crossref_primary_10_4093_dmj_2019_0011
crossref_primary_10_1183_13993003_00546_2017
crossref_primary_10_3390_jcm8122157
crossref_primary_10_1097_MEG_0000000000003076
crossref_primary_10_1590_1806_9282_62_09_872
crossref_primary_10_1016_j_molmet_2021_101178
crossref_primary_10_2174_1874467215666220829102020
crossref_primary_10_3748_wjg_v29_i4_597
crossref_primary_10_1055_a_1957_5671
crossref_primary_10_1007_s13300_020_00794_1
crossref_primary_10_1177_2050312120933804
crossref_primary_10_1007_s12072_021_10209_3
crossref_primary_10_2147_DMSO_S350426
crossref_primary_10_2337_dbi17_0013
crossref_primary_10_1186_s13098_020_00558_8
crossref_primary_10_1016_j_biopha_2024_117184
crossref_primary_10_1186_s12933_020_01161_x
crossref_primary_10_1161_CIR_0000000000000757
crossref_primary_10_3390_agriculture13020249
crossref_primary_10_1186_s12986_017_0219_x
crossref_primary_10_1007_s13410_024_01365_x
crossref_primary_10_4155_fmc_2019_0003
crossref_primary_10_1097_XCE_0000000000000126
crossref_primary_10_3390_life14101327
crossref_primary_10_3390_life12122072
crossref_primary_10_1038_s41598_021_92918_1
crossref_primary_10_1016_j_metabol_2020_154183
crossref_primary_10_1038_s41598_024_81663_w
crossref_primary_10_1002_hep_29052
crossref_primary_10_3390_jcm10081695
crossref_primary_10_1016_j_atherosclerosis_2017_01_008
crossref_primary_10_1111_jcmm_13877
crossref_primary_10_1155_2022_5180242
crossref_primary_10_1080_17474124_2022_2137488
crossref_primary_10_1016_j_orcp_2017_12_003
crossref_primary_10_1016_j_clinbiochem_2018_11_011
crossref_primary_10_1016_j_jff_2020_104014
crossref_primary_10_1038_s41366_018_0076_3
crossref_primary_10_1016_j_bbalip_2021_159023
crossref_primary_10_1007_s12325_016_0306_9
crossref_primary_10_3390_ijms22116110
crossref_primary_10_1016_j_jhep_2018_09_013
crossref_primary_10_3389_fendo_2022_1041616
crossref_primary_10_1177_0049475520962742
crossref_primary_10_3390_nu10050630
crossref_primary_10_1016_j_metabol_2016_06_009
crossref_primary_10_3748_wjg_v26_i28_4018
crossref_primary_10_1007_s10238_020_00636_1
crossref_primary_10_1002_ncp_10449
crossref_primary_10_1007_s11695_025_07906_5
crossref_primary_10_3390_nu17060937
crossref_primary_10_1007_s10620_024_08309_9
crossref_primary_10_1002_hep_31018
crossref_primary_10_1002_jgf2_723
crossref_primary_10_1186_s12944_016_0358_5
crossref_primary_10_2337_db18_1048
crossref_primary_10_3390_ijms21165888
crossref_primary_10_1186_s13098_018_0370_1
crossref_primary_10_1017_S0029665121003815
crossref_primary_10_2147_DMSO_S518292
crossref_primary_10_1111_andr_12979
crossref_primary_10_1007_s00592_018_1266_0
crossref_primary_10_1097_MD_0000000000039613
crossref_primary_10_1186_s12902_024_01820_0
crossref_primary_10_1186_s12986_016_0149_z
crossref_primary_10_1097_HJH_0000000000001730
crossref_primary_10_3389_fphar_2019_00877
crossref_primary_10_31146_1682_8658_ecg_192_8_167_174
crossref_primary_10_1016_j_eprac_2022_03_010
crossref_primary_10_1371_journal_pone_0325305
crossref_primary_10_2147_DMSO_S358744
crossref_primary_10_3390_metabo15040280
crossref_primary_10_1002_ptr_8010
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_1111_liv_13221
crossref_primary_10_1093_jsxmed_qdae080
crossref_primary_10_1136_gutjnl_2017_313884
crossref_primary_10_1016_j_dld_2018_01_126
crossref_primary_10_3390_ijms22094459
crossref_primary_10_1186_s12986_018_0329_0
crossref_primary_10_1038_s41598_025_06723_1
crossref_primary_10_1210_clinem_dgac190
crossref_primary_10_3390_ijerph16173104
crossref_primary_10_1002_edm2_116
crossref_primary_10_1016_j_gastrohep_2022_12_002
crossref_primary_10_1016_j_rgmxen_2019_02_003
crossref_primary_10_1038_s41591_018_0104_9
crossref_primary_10_1016_j_jhep_2017_09_021
crossref_primary_10_1038_s41598_021_92292_y
crossref_primary_10_3390_diseases5040023
crossref_primary_10_3390_ijerph17113902
crossref_primary_10_1016_j_atherosclerosis_2018_07_028
crossref_primary_10_1038_s41598_020_63803_0
crossref_primary_10_1002_hep4_1387
crossref_primary_10_1111_obr_13563
crossref_primary_10_3390_livers2010003
crossref_primary_10_1007_s00592_019_01374_x
crossref_primary_10_7717_peerj_6273
crossref_primary_10_4239_wjd_v13_i9_668
crossref_primary_10_1016_j_mayocp_2021_08_021
crossref_primary_10_1186_s12902_023_01382_7
crossref_primary_10_1016_j_jacl_2016_09_007
crossref_primary_10_1080_21688370_2023_2289830
crossref_primary_10_1007_s00330_019_06480_6
crossref_primary_10_1111_liv_13329
crossref_primary_10_1016_j_cgh_2019_08_007
crossref_primary_10_4093_dmj_2019_0020
crossref_primary_10_1111_liv_14417
crossref_primary_10_1016_j_jhep_2023_03_040
crossref_primary_10_1097_CM9_0000000000001888
crossref_primary_10_1111_ijpo_70017
crossref_primary_10_1136_bmjopen_2018_025524
crossref_primary_10_1186_s12944_018_0913_3
crossref_primary_10_3390_jcm8050610
crossref_primary_10_3390_nu11030705
crossref_primary_10_1080_17474124_2020_1810563
crossref_primary_10_3390_ijerph16224334
crossref_primary_10_1080_17460441_2020_1811674
crossref_primary_10_3390_nu12082174
crossref_primary_10_3390_jcm8081202
crossref_primary_10_3390_diagnostics12102426
crossref_primary_10_1002_edm2_456
crossref_primary_10_1016_j_acthis_2021_151735
crossref_primary_10_1016_j_alcohol_2020_08_007
crossref_primary_10_3390_plants13141985
crossref_primary_10_1007_s11892_024_01558_y
crossref_primary_10_1186_s12876_019_0972_6
crossref_primary_10_1016_j_clinre_2023_102163
crossref_primary_10_1210_clinem_dgad375
crossref_primary_10_1007_s40519_021_01287_1
crossref_primary_10_1016_j_jtcme_2020_02_004
crossref_primary_10_1177_10815589221141830
crossref_primary_10_2337_dc17_1902
crossref_primary_10_1177_20406223221083508
crossref_primary_10_3389_fendo_2023_1306134
crossref_primary_10_1016_j_ajg_2018_08_003
crossref_primary_10_1371_journal_pone_0224626
crossref_primary_10_1016_j_dld_2021_04_029
crossref_primary_10_1161_CIR_0000000000001209
crossref_primary_10_3390_biomedicines9101491
crossref_primary_10_1053_j_gastro_2020_02_020
crossref_primary_10_1111_liv_14116
crossref_primary_10_1016_j_sajb_2022_04_048
crossref_primary_10_3350_cmh_2021_0178
crossref_primary_10_1016_j_livres_2020_03_002
crossref_primary_10_1038_s41598_023_28751_5
crossref_primary_10_1111_jdi_13496
crossref_primary_10_1016_j_clnu_2024_04_004
crossref_primary_10_1155_2018_8490242
crossref_primary_10_3390_ijerph17082620
crossref_primary_10_1038_s41392_024_01951_9
crossref_primary_10_3390_biomedicines10020249
crossref_primary_10_1186_s12906_020_2835_7
crossref_primary_10_1111_liv_14562
crossref_primary_10_2147_DMSO_S337416
crossref_primary_10_1111_liv_15661
crossref_primary_10_1136_bmjopen_2016_011939
crossref_primary_10_1002_hep4_1068
crossref_primary_10_3390_diagnostics15101208
crossref_primary_10_1111_dom_13522
crossref_primary_10_3390_ijerph18105227
crossref_primary_10_1111_eci_70095
crossref_primary_10_1016_j_diabres_2024_111649
crossref_primary_10_1038_s41598_024_55282_4
crossref_primary_10_1016_j_heliyon_2023_e22007
crossref_primary_10_4103_wjtcm_wjtcm_1_25
crossref_primary_10_2147_DMSO_S314550
crossref_primary_10_4254_wjh_v16_i4_511
crossref_primary_10_1089_met_2018_0077
crossref_primary_10_1111_liv_13363
crossref_primary_10_1186_s12944_018_0824_3
crossref_primary_10_1007_s12325_020_01307_z
crossref_primary_10_1039_D0FO02610G
crossref_primary_10_1155_2021_5582813
crossref_primary_10_1111_jdi_13279
crossref_primary_10_1007_s00109_019_01765_1
crossref_primary_10_1136_bmjdrc_2018_000585
crossref_primary_10_1016_j_diabet_2019_12_007
crossref_primary_10_3390_nu14061307
crossref_primary_10_1136_bmjdrc_2018_000549
crossref_primary_10_1016_j_hermed_2020_100342
crossref_primary_10_1097_MD_0000000000007853
crossref_primary_10_1038_s41401_018_0016_8
crossref_primary_10_1111_eci_12988
crossref_primary_10_1177_8756479319834927
crossref_primary_10_1093_labmed_lmab118
crossref_primary_10_3389_fendo_2021_773342
crossref_primary_10_3748_wjg_v28_i27_3314
crossref_primary_10_1186_s12967_023_04367_1
crossref_primary_10_1080_00325481_2016_1242366
crossref_primary_10_3390_jcm11237213
crossref_primary_10_1016_j_clinre_2019_10_001
crossref_primary_10_1038_s41598_024_82513_5
crossref_primary_10_1111_jdi_13221
crossref_primary_10_1080_17512433_2017_1300059
crossref_primary_10_3892_ijmm_2024_5412
crossref_primary_10_3345_cep_2022_01312
crossref_primary_10_1016_j_expneurol_2021_113725
crossref_primary_10_37349_edd_2025_100586
crossref_primary_10_3390_jcm9051278
crossref_primary_10_3389_fendo_2023_1266692
crossref_primary_10_1111_dom_14322
crossref_primary_10_1002_dmrr_3452
crossref_primary_10_1111_jgh_13648
crossref_primary_10_1186_s12916_017_0901_x
crossref_primary_10_1371_journal_pone_0289616
crossref_primary_10_3390_ijms20071660
crossref_primary_10_3390_jcm11102759
crossref_primary_10_37349_edd_2025_100590
crossref_primary_10_1111_liv_14807
crossref_primary_10_1371_journal_pone_0187502
crossref_primary_10_3390_genes13020315
crossref_primary_10_1111_ijpo_12624
crossref_primary_10_1186_s12933_025_02795_5
crossref_primary_10_3390_ijerph16193570
crossref_primary_10_1111_dom_14651
crossref_primary_10_1177_20406223221122478
crossref_primary_10_3390_ijms24043219
crossref_primary_10_1097_MD_0000000000020960
crossref_primary_10_1007_s12325_017_0556_1
crossref_primary_10_1016_j_tranon_2018_10_010
crossref_primary_10_1016_j_mgene_2018_07_006
crossref_primary_10_26599_FMH_2024_9420002
crossref_primary_10_1016_j_diabres_2022_109968
crossref_primary_10_1007_s12325_020_01281_6
crossref_primary_10_1371_journal_pone_0208736
crossref_primary_10_1016_j_numecd_2021_04_028
crossref_primary_10_1038_s41598_022_06205_8
crossref_primary_10_3350_cmh_2022_0336
crossref_primary_10_3390_biomedicines10102351
crossref_primary_10_1186_s12916_024_03315_0
crossref_primary_10_1016_j_diabet_2020_08_008
crossref_primary_10_1136_bmj_m4747
crossref_primary_10_1002_hep4_1529
crossref_primary_10_3390_diseases6040093
crossref_primary_10_1016_j_humgen_2022_201073
crossref_primary_10_1016_j_dld_2016_10_004
crossref_primary_10_1186_s13098_025_01796_4
crossref_primary_10_1016_j_ebiom_2016_05_021
crossref_primary_10_1016_j_jhep_2020_02_028
crossref_primary_10_1016_j_medcle_2022_05_009
crossref_primary_10_1016_j_transproceed_2019_04_062
crossref_primary_10_1111_hepr_12925
crossref_primary_10_3390_nu14245344
crossref_primary_10_1016_j_dld_2017_12_018
crossref_primary_10_1053_j_gastro_2020_01_052
crossref_primary_10_1186_s13098_023_01200_z
crossref_primary_10_1371_journal_pone_0221524
crossref_primary_10_1111_resp_13127
crossref_primary_10_1111_liv_13413
crossref_primary_10_1002_ctd2_9
crossref_primary_10_1111_jgh_15877
crossref_primary_10_3389_fnut_2021_653918
crossref_primary_10_2147_DMSO_S443329
crossref_primary_10_1016_j_gastre_2022_12_010
crossref_primary_10_1038_s41598_021_95546_x
crossref_primary_10_3390_metabo14010040
crossref_primary_10_1038_srep27034
crossref_primary_10_1186_s12944_022_01771_2
crossref_primary_10_3390_ijms20092215
crossref_primary_10_1136_bmjdrc_2016_000296
crossref_primary_10_1002_lipd_12453
crossref_primary_10_1016_j_scispo_2020_03_003
crossref_primary_10_1080_17512433_2023_2259306
crossref_primary_10_1161_CIR_0000000000001052
crossref_primary_10_1016_j_jceh_2024_101409
crossref_primary_10_1080_17474124_2019_1649981
crossref_primary_10_1155_2018_2548154
crossref_primary_10_1038_srep44844
crossref_primary_10_4330_wjc_v16_i10_580
crossref_primary_10_1515_abm_2018_0026
crossref_primary_10_1002_med_21515
crossref_primary_10_1080_17474124_2018_1415756
crossref_primary_10_2337_dc19_1483
crossref_primary_10_3390_pharmacy11050151
crossref_primary_10_2147_JHC_S392051
crossref_primary_10_1111_1751_2980_12685
crossref_primary_10_1186_s12933_025_02793_7
crossref_primary_10_1016_j_numecd_2021_05_022
crossref_primary_10_1371_journal_pone_0220659
crossref_primary_10_1016_j_dsx_2021_03_007
crossref_primary_10_1111_liv_13994
crossref_primary_10_3389_fphar_2019_00604
crossref_primary_10_1089_met_2019_0107
crossref_primary_10_1002_jgm_3160
crossref_primary_10_3390_jcm10061161
crossref_primary_10_1111_dom_15304
crossref_primary_10_3390_medicina58010004
crossref_primary_10_1016_j_numecd_2023_08_005
crossref_primary_10_1007_s11606_020_06426_5
crossref_primary_10_3389_fmed_2024_1418364
crossref_primary_10_1111_jgh_13434
crossref_primary_10_1007_s11033_022_08108_3
crossref_primary_10_1016_j_phytol_2022_06_005
crossref_primary_10_1111_jgh_15850
crossref_primary_10_1097_HEP_0000000000000323
crossref_primary_10_1186_s12902_022_01042_2
crossref_primary_10_1097_RCT_0000000000001521
crossref_primary_10_3389_fnut_2023_1166244
crossref_primary_10_1186_s12967_022_03495_4
crossref_primary_10_1136_gutjnl_2020_322572
crossref_primary_10_1371_journal_pone_0198327
crossref_primary_10_3389_fendo_2022_815995
crossref_primary_10_3390_ph11040121
crossref_primary_10_3390_nu14173459
crossref_primary_10_4254_wjh_v14_i8_1633
crossref_primary_10_1016_j_diabres_2020_108385
crossref_primary_10_1016_j_diabres_2025_112008
crossref_primary_10_1038_s41598_023_42422_5
crossref_primary_10_1155_2020_3920196
crossref_primary_10_3390_ijms232416226
crossref_primary_10_1080_13685538_2020_1867094
crossref_primary_10_4239_wjd_v12_i9_1479
crossref_primary_10_1210_clinem_dgaa583
crossref_primary_10_1371_journal_pone_0249221
crossref_primary_10_1111_jgh_14105
crossref_primary_10_1186_s12876_022_02619_w
crossref_primary_10_1136_bmjopen_2016_013781
crossref_primary_10_3389_fnut_2024_1478194
crossref_primary_10_4093_dmj_2023_0350
crossref_primary_10_1007_s12072_023_10620_y
crossref_primary_10_1186_s12944_023_01772_9
crossref_primary_10_1161_CIR_0000000000000950
crossref_primary_10_1186_s43066_025_00452_w
crossref_primary_10_1002_hep_29889
crossref_primary_10_1039_D2FO03308A
crossref_primary_10_1017_S000711451800137X
crossref_primary_10_1186_s12967_023_04543_3
crossref_primary_10_1210_clinem_dgaa575
crossref_primary_10_1186_s12876_022_02550_0
crossref_primary_10_3390_biomedicines9010093
crossref_primary_10_1111_dme_14522
crossref_primary_10_3390_ijms22052350
crossref_primary_10_1016_j_aohep_2024_101759
crossref_primary_10_1016_j_metabol_2017_04_003
crossref_primary_10_3390_jcdd9120419
crossref_primary_10_1016_S2468_1253_19_30173_6
crossref_primary_10_3390_ph17030369
crossref_primary_10_3389_fmed_2023_1216412
crossref_primary_10_1183_13993003_01923_2016
crossref_primary_10_3390_metabo13040517
crossref_primary_10_1016_j_cger_2020_04_010
crossref_primary_10_1038_s41598_023_45100_8
crossref_primary_10_1194_jlr_P088997
crossref_primary_10_3390_metabo10110465
crossref_primary_10_1097_HC9_0000000000000297
crossref_primary_10_3748_wjg_v22_i44_9674
crossref_primary_10_1016_j_aohep_2023_101106
crossref_primary_10_3389_ti_2022_10443
crossref_primary_10_1007_s11517_025_03355_5
crossref_primary_10_1016_j_pcd_2023_06_003
crossref_primary_10_1016_j_medcli_2021_12_003
crossref_primary_10_1210_clinem_dgaa112
crossref_primary_10_1016_j_gastha_2022_02_002
crossref_primary_10_1038_s41467_024_48618_1
crossref_primary_10_3390_cells10112978
crossref_primary_10_3390_jcm7110458
crossref_primary_10_1016_j_acra_2019_04_001
crossref_primary_10_3389_fphar_2025_1594278
crossref_primary_10_3390_gastroent15040071
crossref_primary_10_1007_s00253_023_12912_7
crossref_primary_10_1097_MEG_0000000000001967
crossref_primary_10_1016_j_diabres_2017_10_019
crossref_primary_10_3390_ijms17030281
crossref_primary_10_1177_03000605211047074
crossref_primary_10_2147_DMSO_S291595
crossref_primary_10_3390_diagnostics11010098
crossref_primary_10_3390_jcm10050924
crossref_primary_10_3390_nu14010103
crossref_primary_10_3748_wjg_v23_i36_6571
crossref_primary_10_1016_j_jep_2020_112556
crossref_primary_10_3390_ijms21061907
crossref_primary_10_3390_ijms25084397
crossref_primary_10_1002_dmrr_3386
crossref_primary_10_1038_s41598_024_82116_0
crossref_primary_10_1111_jgh_14266
crossref_primary_10_3390_ijms20081948
crossref_primary_10_1016_j_jceh_2024_101371
crossref_primary_10_3390_nu15102252
crossref_primary_10_1016_j_biopha_2022_113261
crossref_primary_10_1186_s12944_022_01752_5
crossref_primary_10_3390_ijms22063062
crossref_primary_10_2174_1381612828666221006123144
crossref_primary_10_1002_dmrr_3254
crossref_primary_10_1080_17474124_2020_1802244
crossref_primary_10_1139_apnm_2018_0729
crossref_primary_10_1111_jgh_14011
crossref_primary_10_3390_life13091881
crossref_primary_10_14309_ajg_0000000000000058
crossref_primary_10_1097_MEG_0000000000000736
crossref_primary_10_1186_s12876_019_0958_4
crossref_primary_10_3390_ijms17020217
crossref_primary_10_1159_000538765
crossref_primary_10_3390_cells9051214
crossref_primary_10_1016_j_pcd_2020_02_011
crossref_primary_10_2174_1381612826666200417142444
crossref_primary_10_3390_cancers13051110
crossref_primary_10_3390_nu14234946
crossref_primary_10_31083_j_ceog5109206
crossref_primary_10_1155_2021_6678755
crossref_primary_10_3748_wjg_v23_i36_6549
crossref_primary_10_1002_1348_9585_12109
crossref_primary_10_3389_fendo_2022_848937
crossref_primary_10_31146_1682_8658_ecg_230_10_178_187
crossref_primary_10_1136_bmjopen_2016_013543
crossref_primary_10_1159_000542914
crossref_primary_10_3390_ijms18091955
crossref_primary_10_1007_s11684_025_1133_7
crossref_primary_10_3390_life14020272
crossref_primary_10_1097_HEP_0000000000000286
crossref_primary_10_15171_apb_2018_012
crossref_primary_10_3350_cmh_2024_0431
crossref_primary_10_1097_QAD_0000000000001483
crossref_primary_10_2147_DMSO_S437865
crossref_primary_10_3390_nu9070774
Cites_doi 10.1111/j.1365-2796.2005.01572.x
10.1016/j.jclinepi.2007.11.008
10.1371/journal.pone.0096651
10.2188/jea.13.15
10.1002/sim.1186
10.1002/dmrr.890
10.1038/oby.2011.136
10.1016/j.dld.2014.09.020
10.7762/cnr.2013.2.1.67
10.1111/dme.12315
10.2337/diabetes.53.11.2855
10.1038/ajg.2013.349
10.1111/j.1440-1746.2012.07264.x
10.1111/liv.12200
10.1016/j.cca.2009.03.035
10.1016/j.atherosclerosis.2013.01.029
10.1210/jc.2013-1519
10.1371/journal.pone.0080596
10.1053/j.gastro.2008.09.018
10.1016/j.jhep.2013.05.044
10.1016/j.cgh.2015.01.027
10.2337/diacare.27.6.1427
10.1016/j.cmet.2015.09.023
10.1038/ajg.2009.229
10.1073/pnas.0904944106
10.1038/ajg.2009.67
10.3109/07853890.2010.518623
10.1111/j.1440-1746.2006.04781.x
10.1373/49.8.1358
10.1186/1758-5996-6-14
10.1111/j.1464-5491.2008.02410.x
10.1016/j.jhep.2014.12.012
10.2337/dc07-2159
10.2337/diacare.28.7.1757
10.1371/journal.pone.0096068
10.1111/j.1753-0407.2010.00111.x
10.2337/diabetes.51.6.1889
10.1111/dme.12187
10.1016/j.metabol.2007.10.015
10.1111/ijcp.12507
10.1586/17474124.2015.1007955
10.2337/dc07-2184
10.2337/dc07-0792
10.1038/oby.2010.90
10.2337/dc15-0140
10.2337/dc08-1870
10.1038/oby.2007.218
10.1002/hep.21327
10.1111/liv.12840
10.1002/14651858.CD003054.pub3
10.1111/j.1742-1241.2012.02959.x
10.4082/kjfm.2012.33.1.51
10.1111/dme.12345
10.1016/S1262-3636(07)70229-X
10.2337/diacare.28.11.2812
10.1016/j.diabet.2008.01.009
10.1016/j.atherosclerosis.2013.01.002
10.1073/pnas.1219456110
10.2337/dc07-0440
10.1194/jlr.M037952
10.1016/j.dld.2015.08.004.
10.1073/pnas.1113359108
10.2337/dc07-0106
10.2337/diacare.28.12.2913
10.1016/j.metabol.2009.08.024
10.1161/01.ATV.0000251993.20372.40
10.1007/s00125-003-1036-5
10.3346/jkms.2013.28.11.1603
10.2337/diabetes.53.10.2623
10.1111/liv.12851
10.1186/1471-230X-10-56
10.1089/met.2012.0147
10.1002/hep.26183
10.2337/diabetes.54.11.3140
ContentType Journal Article
Copyright 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
– notice: 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/jgh.13264
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1440-1746
EndPage 944
ExternalDocumentID 26667191
10_1111_jgh_13264
JGH13264
ark_67375_WNG_BMQ1W9RV_L
Genre article
Meta-Analysis
Systematic Review
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KMS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3984-e264cd9a080462403e34f3ab0acc576919b02756fcf1825b90fcd2b4fe86dfb23
IEDL.DBID DRFUL
ISICitedReferencesCount 563
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375089100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0815-9319
1440-1746
IngestDate Thu Sep 04 19:27:59 EDT 2025
Mon Jul 21 06:07:37 EDT 2025
Sat Nov 29 03:01:50 EST 2025
Tue Nov 18 22:39:58 EST 2025
Sun Sep 21 06:17:06 EDT 2025
Sun Sep 21 06:16:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords AST
NAFLD
GGT
Metabolic Syndrome
Ultrasonography
ALT
Liver enzymes
Diabetes
Language English
License 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3984-e264cd9a080462403e34f3ab0acc576919b02756fcf1825b90fcd2b4fe86dfb23
Notes ark:/67375/WNG-BMQ1W9RV-L
istex:E38D9F7BC73B7936559F5F2EBF384C75BE867212
ArticleID:JGH13264
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
OpenAccessLink http://hdl.handle.net/11380/1102430
PMID 26667191
PQID 1785740070
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1785740070
pubmed_primary_26667191
crossref_citationtrail_10_1111_jgh_13264
crossref_primary_10_1111_jgh_13264
wiley_primary_10_1111_jgh_13264_JGH13264
istex_primary_ark_67375_WNG_BMQ1W9RV_L
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-05-00
2016-May
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
PublicationTitle Journal of gastroenterology and hepatology
PublicationTitleAlternate Journal of Gastroenterology and Hepatology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 2015; 47: 181-90.
Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care 2008; 31: 1138-43.
Zhang T, Zhang Y, Zhang C et al. Prediction of metabolic syndrome by non-alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study. PLoS One 2014; 9: e96651.
Nascimbeni F, Pais R, Bellentani S et al. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013; 59: 859-71.
Lee DS, Evans JC, Robins SJ et al. Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 127-33.
Fabbrini E, Magkos F, Mohammed BS et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 15430-5.
Ryu S, Chang Y, Woo HY et al. Longitudinal increase in gamma-glutamyltransferase within the reference interval predicts metabolic syndrome in middle-aged Korean men. Metab. Clin. Exp. 2010; 59: 683-9.
Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51: 1889-95.
Kunutsor SK, Seddoh D. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship. PLoS One 2014; 9 e96068.
Hanley AJ, WilliaMetS K, Festa A et al. Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004; 53: 2623-32.
Schneider AL, Lazo M, Ndumele CE et al. Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study. Diabet. Med. 2013; 30: 926-33.
Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am. J. Gastroenterol. 2009; 104: 1715-22.
Zelber-Sagi S, Lotan R, Shibolet O et al. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013; 33: 1406-12.
André P, Balkau B, Born C et al. Hepatic markers and development of type 2 diabetes in middle aged men and women: a three-year follow-up study. Diabetes Metab. 2005; 31: 542-50.
Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 2007; 30: 2940-4.
Arulanandan A, Ang B, Bettencourt R et al. Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2015; 13: 1513-20.
Ekstedt M, Franzén LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-73.
Suh YJ, Park SK, Choi JM, Ryoo JH. The clinical importance of serum γ-glutamyltransferase level as an early predictor of obesity development in Korean men. Atherosclerosis 2013; 227: 437-41.
Ryoo JH, Choi JM, Moon SY et al. The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5-year's prospective cohort study. Atherosclerosis 2013; 227: 398-403.
Ahn HR, Shin MH, Nam HS et al. The association between liver enzymes and risk of type 2 diabetes: the Namwon study. Diabetol. Metab. Syndr. 2014; 6: 14.
Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 2009; 104: 861-7.
Onat A, Can G, Örnek E, Çiçek G, Ayhan E, Doğan Y. Serum γ-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity (Silver Spring) 2012; 20: 842-8.
Kasturiratne A, Weerasinghe S, Dassanayake AS et al. Influence of non-alcoholic fatty liver disease on the development of diabetes mellitus. J. Gastroenterol. Hepatol. 2013; 28: 142-7.
Ballestri S, Romagnoli D, Nascimbeni F, Francica G, Lonardo A. Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev. Gastroenterol. Hepatol. 2015; 9: 603-27.
Orozco LJ, Buchleitner AM, Gimenez-Perez G et al. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008 CD003054.
Ryoo JH, Oh CM, Kim HS, Park SK, Choi JM. Clinical association between serum γ-glutamyltransferase levels and the development of insulin resistance in Korean men: a 5-year follow-up study. Diabet. Med. 2014; 31: 455-61.
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21: 1539-58.
Sung KC, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. J. Clin. Endocrinol. Metab. 2013; 98: 3637-43.
Liu CF, Zhou WN, Fang NY. Gamma-glutamyltransferase levels and risk of metabolic syndrome: a meta-analysis of prospective cohort studies. Int. J. Clin. Pract. 2012; 66: 692-8.
Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 2005; 28: 2913-8.
Sato KK, Hayashi T, Nakamura Y et al. Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 2008; 31: 1230-6.
Goessling W, Massaro JM, Vasan RS, D'Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 2008; 135: 1935-44.
Meex RC, Hoy AJ, Morris A et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 2015. DOI: 10.1016/j.cmet.2015.09.023.
Non-alcoholic fatty liver disease (NAFLD) study group, dedicated to the memory of Prof. Paola Loria; Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH et al. Epidemiological modifiers of non-alcoholic fatty liver disease: focus on high-risk groups. Dig. Liver Dis. 2015 Aug 14. pii: S1590-8658(15)00568-X. doi:. DOI: 10.1016/j.dld.2015.08.004. [Epub ahead of print].
Balkau B, Lange C, Vol S, Fumeron F, Bonnet F, Group Study D.E.S.I.R. Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 2010; 10: 56.
Kunutsor SK, Apekey TA, Seddoh D. Gamma-glutamyltransferase and metabolic syndrome risk: a systematic review and dose-response meta-analysis. Int. J. Clin. Pract. 2015; 69: 136-44.
Bril F, Ortiz-Lopez C, Lomonaco R et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015; 35: 2139-46.
Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 2009; 32: 741-50.
von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 2008; 61: 344-9.
Lee DH, Ha MH, Kim JH et al. Gammaglutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 2003; 46: 359-64.
Hanley AJ, WilliaMetS K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 2005; 54: 3140-7.
Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011; 43: 617-49.
Sattar N, Scherbakova O, Ford I et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 2004; 53: 2855-60.
Chitraju C, Trötzmüller M, Hartler J et al. The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes. J. Lipid Res. 2013; 54: 2185-94.
Liu Z, Que S, Ning H, Wang L, Peng T. Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta-analysis of prospective studies. PLoS One 2013; 8: e80596.
Jo SK, Lee WY, Rhee EJ et al. Serum (gamma)-glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria. Clin. Chim. Acta 2009; 403: 234-40.
Cicero AF, D'Addato S, Reggi A, Marchesini G, Borghi C, Heart Study B. Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study. Metab. Syndr. Relat. Disord. 2013; 11: 412-6.
Cho NH, Jang HC, Choi SH et al. Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 2007; 30: 2566-8.
Monami M, Bardini G, Lamanna C et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism 2008; 57: 387-92.
Xu Y, Bi YF, Xu M et al. Cross-sectional and longitudinal association of serum alanine aminotransaminase and γ-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people. J. Diabetes 2011; 3: 38-47.
Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 2007; 22: 1086-91.
Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Association of serum gamma-glutamyl
2015; 35
2010; 10
2010; 59
2015; 38
2013; 28
2013; 2
2004; 27
2010; 18
2002; 51
2005; 258
2003; 13
2008; 34
2008; 31
2007; 30
2013; 8
2005; 28
2015; 47
2013; 59
2013; 11
2013; 54
2013; 98
2013; 57
2003; 46
2008; 25
2005; 31
2003; 49
2013; 110
2008; 61
2014; 9
2007; 22
2014; 6
2012; 66
2012; 20
2009; 403
2007; 27
2015; 13
2009; 25
2011
2013; 108
2013; 227
2008
2008; 57
2011; 3
2015; 9
2012; 33
2007; 15
2004; 53
2015; 69
2011; 108
2009; 32
2013; 33
2015; 62
2006; 44
2002; 21
2013; 30
2011; 43
2005; 54
2015
2008; 135
2009; 104
2014; 31
2009; 106
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – reference: Oka R, Aizawa T, Yagi K, Hayashi K, Kawashiri M, Yamagishi M. Elevated liver enzymes are related to progression to impaired glucose tolerance in Japanese men. Diabet. Med. 2014; 31: 552-8.
– reference: Kunutsor SK, Apekey TA, Seddoh D. Gamma-glutamyltransferase and metabolic syndrome risk: a systematic review and dose-response meta-analysis. Int. J. Clin. Pract. 2015; 69: 136-44.
– reference: Lee DH, Jacobs DR Jr, Gross M et al. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Chem. 2003; 49: 1358-66.
– reference: Hanley AJ, WilliaMetS K, Festa A et al. Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2004; 53: 2623-32.
– reference: Chitraju C, Trötzmüller M, Hartler J et al. The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes. J. Lipid Res. 2013; 54: 2185-94.
– reference: Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21: 1539-58.
– reference: Lee DS, Evans JC, Robins SJ et al. Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 127-33.
– reference: Ming J, Xu S, Gao B et al. Non-alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five-year cohort study. Liver Int. 2015; 35: 2401-7.
– reference: Nakanishi N, Suzuki K, Tatara K. Serum gamma-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care 2004; 27: 1427-32.
– reference: Zhang T, Zhang Y, Zhang C et al. Prediction of metabolic syndrome by non-alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study. PLoS One 2014; 9: e96651.
– reference: Schindhelm RK, Dekker JM, Nijpels G, Heine RJ, Diamant M. No independent association of alanine aminotransferase with risk of future type 2 diabetes in the Hoorn study. Diabetes Care 2005; 28: 2812.
– reference: Byrne CD, Targher G. NAFLD: a multisystem disease. J. Hepatol. 2015; 62 (1 Suppl): S47-64.
– reference: André P, Balkau B, Vol S, Charles MA, Eschwège E, DESIR Study Group. Gamma-glutamyltransferase activity and development of the metabolic syndrome (International Diabetes Federation Definition) in middle-aged men and women: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort. Diabetes Care 2007; 30: 2355-61.
– reference: Cho NH, Jang HC, Choi SH et al. Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care 2007; 30: 2566-8.
– reference: Yamazaki H, Tsuboya T, Tsuji K, Dohke M, Maguchi H. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care 2015; 38: 1673-9.
– reference: Liu Z, Que S, Ning H, Wang L, Peng T. Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta-analysis of prospective studies. PLoS One 2013; 8: e80596.
– reference: Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults. Diabet. Med. 2008; 25: 476-81.
– reference: Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 2007; 22: 1086-91.
– reference: Lee JH, Um MH, Park YK. The association of metabolic syndrome and serum γ-glutamyl transpeptidase: a 4-year cohort study of 3,698 korean male workers. Clin. Nutr. Res. 2013; 2: 67-75.
– reference: Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 2005; 28: 2913-8.
– reference: Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011; 43: 617-49.
– reference: Hanley AJ, WilliaMetS K, Festa A, Wagenknecht LE, D'Agostino RB Jr, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 2005; 54: 3140-7.
– reference: Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Association of serum gamma-glutamyltransferase and alanine aminotransferase activities with risk of type 2 diabetes mellitus independent of fatty liver. Diabetes Metab. Res. Rev. 2009; 25: 64-9.
– reference: Park SK, Seo MH, Shin HC, Ryoo JH. Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5-year prospective cohort study. Hepatology 2013; 57: 1378-83.
– reference: Kasturiratne A, Weerasinghe S, Dassanayake AS et al. Influence of non-alcoholic fatty liver disease on the development of diabetes mellitus. J. Gastroenterol. Hepatol. 2013; 28: 142-7.
– reference: Jo SK, Lee WY, Rhee EJ et al. Serum (gamma)-glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria. Clin. Chim. Acta 2009; 403: 234-40.
– reference: Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring) 2010; 18: 1510-5.
– reference: Non-alcoholic fatty liver disease (NAFLD) study group, dedicated to the memory of Prof. Paola Loria; Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH et al. Epidemiological modifiers of non-alcoholic fatty liver disease: focus on high-risk groups. Dig. Liver Dis. 2015 Aug 14. pii: S1590-8658(15)00568-X. doi:. DOI: 10.1016/j.dld.2015.08.004. [Epub ahead of print].
– reference: Zelber-Sagi S, Lotan R, Shibolet O et al. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013; 33: 1406-12.
– reference: Bril F, Ortiz-Lopez C, Lomonaco R et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015; 35: 2139-46.
– reference: Arulanandan A, Ang B, Bettencourt R et al. Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2015; 13: 1513-20.
– reference: Ryoo JH, Choi JM, Moon SY et al. The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5-year's prospective cohort study. Atherosclerosis 2013; 227: 398-403.
– reference: von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 2008; 61: 344-9.
– reference: Goessling W, Massaro JM, Vasan RS, D'Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 2008; 135: 1935-44.
– reference: Kunutsor SK, Seddoh D. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship. PLoS One 2014; 9 e96068.
– reference: Cantley JL, Yoshimura T, Camporez JP et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 1869-74.
– reference: Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 2007; 30: 2940-4.
– reference: Nannipieri M, Gonzales C, Baldi S et al. Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care 2005; 28: 1757-62.
– reference: Ford ES, Schulze MB, Bergmann MM, Thamer C, Joost HG, Boeing H. Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care 2008; 31: 1138-43.
– reference: Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51: 1889-95.
– reference: Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 2009; 32: 741-50.
– reference: Fabbrini E, Magkos F, Mohammed BS et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 15430-5.
– reference: Sung KC, Wild SH, Byrne CD. Resolution of fatty liver and risk of incident diabetes. J. Clin. Endocrinol. Metab. 2013; 98: 3637-43.
– reference: Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 2015; 47: 181-90.
– reference: Chun H, Park SK, Ryoo JH. Association of serum γ-glutamyltransferase level and incident prehypertension in Korean men. J. Korean Med. Sci. 2013; 28: 1603-8.
– reference: Sato KK, Hayashi T, Nakamura Y et al. Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 2008; 31: 1230-6.
– reference: Lee DH, Ha MH, Kim JH et al. Gammaglutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 2003; 46: 359-64.
– reference: Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am. J. Gastroenterol. 2009; 104: 1715-22.
– reference: Ahn HR, Shin MH, Nam HS et al. The association between liver enzymes and risk of type 2 diabetes: the Namwon study. Diabetol. Metab. Syndr. 2014; 6: 14.
– reference: Jiamjarasrangsi W, Sangwatanaroj W, Lohsoonthorn V, Lertmaharit S. Increased alanine aminotransferase level and future risk of type 2 diabetes and impaired fasting glucose among the employees in a university hospital in Thailand. Diabetes Metab. 2008; 34: 283-9.
– reference: Orozco LJ, Buchleitner AM, Gimenez-Perez G et al. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008 CD003054.
– reference: Nascimbeni F, Pais R, Bellentani S et al. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013; 59: 859-71.
– reference: Chang Y, Jung HS, Yun KE, Cho J, Cho YK, Ryu S. Cohort Study of Non-alcoholic Fatty Liver Disease, NAFLD fibrosis score, and the Risk of Incident Diabetes in a Korean population. Am. J. Gastroenterol. 2013; 108: 1861-8.
– reference: Ryu S, Chang Y, Woo HY et al. Longitudinal increase in gamma-glutamyltransferase within the reference interval predicts metabolic syndrome in middle-aged Korean men. Metab. Clin. Exp. 2010; 59: 683-9.
– reference: Onat A, Can G, Örnek E, Çiçek G, Ayhan E, Doğan Y. Serum γ-glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease. Obesity (Silver Spring) 2012; 20: 842-8.
– reference: Ballestri S, Romagnoli D, Nascimbeni F, Francica G, Lonardo A. Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev. Gastroenterol. Hepatol. 2015; 9: 603-27.
– reference: Meisinger C, Lowel H, Heier M, Schneider A, Thorand B. Serum γ-glutamyltransferase and risk of type 2 diabetes mellitus in men and women from the general population. J. Intern. Med. 2005; 258: 527-35.
– reference: Okamoto M, Takeda Y, Yoda Y, Kobayashi K, Fujino MA, Yamagata Z. The association of fatty liver and diabetes risk. J. Epidemiol. 2003; 13: 15-21.
– reference: Kumashiro N, Erion DM, Zhang D et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 16381-5.
– reference: Ekstedt M, Franzén LE, Mathiesen UL et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-73.
– reference: Balkau B, Lange C, Vol S, Fumeron F, Bonnet F, Group Study D.E.S.I.R. Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 2010; 10: 56.
– reference: Sattar N, Scherbakova O, Ford I et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 2004; 53: 2855-60.
– reference: Cicero AF, D'Addato S, Reggi A, Marchesini G, Borghi C, Heart Study B. Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study. Metab. Syndr. Relat. Disord. 2013; 11: 412-6.
– reference: Schneider AL, Lazo M, Ndumele CE et al. Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study. Diabet. Med. 2013; 30: 926-33.
– reference: Ryoo JH, Oh CM, Kim HS, Park SK, Choi JM. Clinical association between serum γ-glutamyltransferase levels and the development of insulin resistance in Korean men: a 5-year follow-up study. Diabet. Med. 2014; 31: 455-61.
– reference: Suh YJ, Park SK, Choi JM, Ryoo JH. The clinical importance of serum γ-glutamyltransferase level as an early predictor of obesity development in Korean men. Atherosclerosis 2013; 227: 437-41.
– reference: Liu CF, Zhou WN, Fang NY. Gamma-glutamyltransferase levels and risk of metabolic syndrome: a meta-analysis of prospective cohort studies. Int. J. Clin. Pract. 2012; 66: 692-8.
– reference: Suh BS. The association between serum gamma-glutamyltransferase within normal levels and metabolic syndrome in office workers: a 4-year follow-up study. Korean J. Fam. Med. 2012; 33: 51-8.
– reference: Monami M, Bardini G, Lamanna C et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism 2008; 57: 387-92.
– reference: Xu Y, Bi YF, Xu M et al. Cross-sectional and longitudinal association of serum alanine aminotransaminase and γ-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people. J. Diabetes 2011; 3: 38-47.
– reference: Doi Y, Kubo M, Yonemoto K et al. Liver enzymes as a predictor for incident diabetes in a Japanese population: the Hisayama study. Obesity 2007; 15: 1841-50.
– reference: Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 2009; 104: 861-7.
– reference: André P, Balkau B, Born C et al. Hepatic markers and development of type 2 diabetes in middle aged men and women: a three-year follow-up study. Diabetes Metab. 2005; 31: 542-50.
– reference: Meex RC, Hoy AJ, Morris A et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 2015. DOI: 10.1016/j.cmet.2015.09.023.
– year: 2011
– volume: 9
  start-page: 603
  year: 2015
  end-page: 27
  article-title: Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications
  publication-title: Expert Rev. Gastroenterol. Hepatol.
– volume: 108
  start-page: 16381
  year: 2011
  end-page: 5
  article-title: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 61
  start-page: 344
  year: 2008
  end-page: 9
  article-title: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies
  publication-title: J. Clin. Epidemiol.
– volume: 110
  start-page: 1869
  year: 2013
  end-page: 74
  article-title: CGI‐58 knockdown sequesters diacylglycerols in lipid droplets/ER‐preventing diacylglycerol‐mediated hepatic insulin resistance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 59
  start-page: 683
  year: 2010
  end-page: 9
  article-title: Longitudinal increase in gamma‐glutamyltransferase within the reference interval predicts metabolic syndrome in middle‐aged Korean men
  publication-title: Metab. Clin. Exp.
– volume: 35
  start-page: 2139
  year: 2015
  end-page: 46
  article-title: Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients
  publication-title: Liver Int.
– volume: 20
  start-page: 842
  year: 2012
  end-page: 8
  article-title: Serum γ‐glutamyltransferase: independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease
  publication-title: Obesity (Silver Spring)
– volume: 10
  start-page: 56
  year: 2010
  article-title: Nine‐year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study
  publication-title: BMC Gastroenterol.
– volume: 59
  start-page: 859
  year: 2013
  end-page: 71
  article-title: From NAFLD in clinical practice to answers from guidelines
  publication-title: J. Hepatol.
– volume: 30
  start-page: 2940
  year: 2007
  end-page: 4
  article-title: Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle‐aged Japanese men
  publication-title: Diabetes Care
– volume: 9
  year: 2014
  article-title: Alanine aminotransferase and risk of the metabolic syndrome: a linear dose–response relationship
  publication-title: PLoS One
– volume: 3
  start-page: 38
  year: 2011
  end-page: 47
  article-title: Cross‐sectional and longitudinal association of serum alanine aminotransaminase and γ‐glutamyltransferase with metabolic syndrome in middle‐aged and elderly Chinese people
  publication-title: J. Diabetes
– volume: 44
  start-page: 865
  year: 2006
  end-page: 73
  article-title: Long‐term follow‐up of patients with NAFLD and elevated liver enzymes
  publication-title: Hepatology
– volume: 31
  start-page: 542
  year: 2005
  end-page: 50
  article-title: Hepatic markers and development of type 2 diabetes in middle aged men and women: a three‐year follow‐up study
  publication-title: Diabetes Metab.
– volume: 30
  start-page: 2355
  year: 2007
  end-page: 61
  article-title: Gamma‐glutamyltransferase activity and development of the metabolic syndrome (International Diabetes Federation Definition) in middle‐aged men and women: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort
  publication-title: Diabetes Care
– volume: 54
  start-page: 3140
  year: 2005
  end-page: 7
  article-title: Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study
  publication-title: Diabetes
– volume: 13
  start-page: 15
  year: 2003
  end-page: 21
  article-title: The association of fatty liver and diabetes risk
  publication-title: J. Epidemiol.
– volume: 57
  start-page: 387
  year: 2008
  end-page: 92
  article-title: Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study
  publication-title: Metabolism
– volume: 54
  start-page: 2185
  year: 2013
  end-page: 94
  article-title: The impact of genetic stress by ATGL deficiency on the lipidome of lipid droplets from murine hepatocytes
  publication-title: J. Lipid Res.
– volume: 46
  start-page: 359
  year: 2003
  end-page: 64
  article-title: Gammaglutamyltransferase and diabetes—a 4 year follow‐up study
  publication-title: Diabetologia
– volume: 28
  start-page: 2913
  year: 2005
  end-page: 8
  article-title: Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men
  publication-title: Diabetes Care
– year: 2008
  article-title: Exercise or exercise and diet for preventing type 2 diabetes mellitus
  publication-title: Cochrane Database Syst. Rev.
– volume: 27
  start-page: 1427
  year: 2004
  end-page: 32
  article-title: Serum gamma‐glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle‐aged Japanese men
  publication-title: Diabetes Care
– volume: 104
  start-page: 1715
  year: 2009
  end-page: 22
  article-title: Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population
  publication-title: Am. J. Gastroenterol.
– volume: 227
  start-page: 437
  year: 2013
  end-page: 41
  article-title: The clinical importance of serum γ‐glutamyltransferase level as an early predictor of obesity development in Korean men
  publication-title: Atherosclerosis
– volume: 53
  start-page: 2855
  year: 2004
  end-page: 60
  article-title: Elevated alanine aminotransferase predicts new‐onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C‐reactive protein in the west of Scotland coronary prevention study
  publication-title: Diabetes
– volume: 49
  start-page: 1358
  year: 2003
  end-page: 66
  article-title: Gamma‐glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study
  publication-title: Clin. Chem.
– volume: 104
  start-page: 861
  year: 2009
  end-page: 7
  article-title: NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven‐year follow‐up study
  publication-title: Am. J. Gastroenterol.
– volume: 108
  start-page: 1861
  year: 2013
  end-page: 8
  article-title: Cohort Study of Non‐alcoholic Fatty Liver Disease, NAFLD fibrosis score, and the Risk of Incident Diabetes in a Korean population
  publication-title: Am. J. Gastroenterol.
– volume: 28
  start-page: 1603
  year: 2013
  end-page: 8
  article-title: Association of serum γ‐glutamyltransferase level and incident prehypertension in Korean men
  publication-title: J. Korean Med. Sci.
– volume: 6
  start-page: 14
  year: 2014
  article-title: The association between liver enzymes and risk of type 2 diabetes: the Namwon study
  publication-title: Diabetol. Metab. Syndr.
– volume: 22
  start-page: 1086
  year: 2007
  end-page: 91
  article-title: Effects of nonalcoholic fatty liver disease on the development of metabolic disorders
  publication-title: J. Gastroenterol. Hepatol.
– volume: 403
  start-page: 234
  year: 2009
  end-page: 40
  article-title: Serum (gamma)‐glutamyl transferase activity predicts future development of metabolic syndrome defined by 2 different criteria
  publication-title: Clin. Chim. Acta
– volume: 15
  start-page: 1841
  year: 2007
  end-page: 50
  article-title: Liver enzymes as a predictor for incident diabetes in a Japanese population: the Hisayama study
  publication-title: Obesity
– volume: 33
  start-page: 51
  year: 2012
  end-page: 8
  article-title: The association between serum gamma‐glutamyltransferase within normal levels and metabolic syndrome in office workers: a 4‐year follow‐up study
  publication-title: Korean J. Fam. Med.
– volume: 51
  start-page: 1889
  year: 2002
  end-page: 95
  article-title: High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes
  publication-title: Diabetes
– volume: 11
  start-page: 412
  year: 2013
  end-page: 6
  article-title: Gender difference in hepatic steatosis index and lipid accumulation product ability to predict incident metabolic syndrome in the historical cohort of the Brisighella Heart Study
  publication-title: Metab. Syndr. Relat. Disord.
– volume: 135
  start-page: 1935
  year: 2008
  end-page: 44
  article-title: Aminotransferase levels and 20‐year risk of metabolic syndrome, diabetes, and cardiovascular disease
  publication-title: Gastroenterology
– volume: 21
  start-page: 1539
  year: 2002
  end-page: 58
  article-title: Quantifying heterogeneity in a meta‐analysis
  publication-title: Stat. Med.
– volume: 258
  start-page: 527
  year: 2005
  end-page: 35
  article-title: Serum γ‐glutamyltransferase and risk of type 2 diabetes mellitus in men and women from the general population
  publication-title: J. Intern. Med.
– volume: 31
  start-page: 552
  year: 2014
  end-page: 8
  article-title: Elevated liver enzymes are related to progression to impaired glucose tolerance in Japanese men
  publication-title: Diabet. Med.
– volume: 25
  start-page: 476
  year: 2008
  end-page: 81
  article-title: Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults
  publication-title: Diabet. Med.
– volume: 28
  start-page: 2812
  year: 2005
  article-title: No independent association of alanine aminotransferase with risk of future type 2 diabetes in the Hoorn study
  publication-title: Diabetes Care
– volume: 8
  start-page: e80596
  year: 2013
  article-title: Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: a meta‐analysis of prospective studies
  publication-title: PLoS One
– volume: 31
  start-page: 1230
  year: 2008
  end-page: 6
  article-title: Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study
  publication-title: Diabetes Care
– year: 2015
  article-title: Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism
  publication-title: Cell Metab.
– volume: 13
  start-page: 1513
  year: 2015
  end-page: 20
  article-title: Association between quantity of liver fat and cardiovascular risk in patients with nonalcoholic fatty liver disease independent of nonalcoholic steatohepatitis
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 30
  start-page: 2566
  year: 2007
  end-page: 8
  article-title: Abnormal liver function test predicts type 2 diabetes: a community‐based prospective study
  publication-title: Diabetes Care
– volume: 30
  start-page: 926
  year: 2013
  end-page: 33
  article-title: Liver enzymes, race, gender and diabetes risk: the Atherosclerosis Risk in Communities (ARIC) Study
  publication-title: Diabet. Med.
– volume: 57
  start-page: 1378
  year: 2013
  end-page: 83
  article-title: Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5‐year prospective cohort study
  publication-title: Hepatology
– volume: 31
  start-page: 1138
  year: 2008
  end-page: 43
  article-title: Liver enzymes and incident diabetes: findings from the European Prospective Investigation Into Cancer and Nutrition (EPIC)‐Potsdam Study
  publication-title: Diabetes Care
– volume: 28
  start-page: 1757
  year: 2005
  end-page: 62
  article-title: Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study
  publication-title: Diabetes Care
– volume: 27
  start-page: 127
  year: 2007
  end-page: 33
  article-title: Gamma glutamyltransferase and metabolic syndrome, cardiovascular disease, and mortality risk: the Framingham Heart Study
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 32
  start-page: 741
  year: 2009
  end-page: 50
  article-title: Alanine aminotransferase, gamma‐glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta‐analysis
  publication-title: Diabetes Care
– volume: 43
  start-page: 617
  year: 2011
  end-page: 49
  article-title: Meta‐analysis: natural history of non‐alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non‐invasive tests for liver disease severity
  publication-title: Ann. Med.
– volume: 18
  start-page: 1510
  year: 2010
  end-page: 5
  article-title: Increased whole‐body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction
  publication-title: Obesity (Silver Spring)
– volume: 98
  start-page: 3637
  year: 2013
  end-page: 43
  article-title: Resolution of fatty liver and risk of incident diabetes
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 31
  start-page: 455
  year: 2014
  end-page: 61
  article-title: Clinical association between serum γ‐glutamyltransferase levels and the development of insulin resistance in Korean men: a 5‐year follow‐up study
  publication-title: Diabet. Med.
– volume: 38
  start-page: 1673
  year: 2015
  end-page: 9
  article-title: Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus
  publication-title: Diabetes Care
– volume: 69
  start-page: 136
  year: 2015
  end-page: 44
  article-title: Gamma‐glutamyltransferase and metabolic syndrome risk: a systematic review and dose–response meta‐analysis
  publication-title: Int. J. Clin. Pract.
– volume: 34
  start-page: 283
  year: 2008
  end-page: 9
  article-title: Increased alanine aminotransferase level and future risk of type 2 diabetes and impaired fasting glucose among the employees in a university hospital in Thailand
  publication-title: Diabetes Metab.
– volume: 227
  start-page: 398
  year: 2013
  end-page: 403
  article-title: The clinical availability of nonalcoholic fatty liver disease as an early predictor of the metabolic syndrome in Korean men: 5‐year's prospective cohort study
  publication-title: Atherosclerosis
– volume: 25
  start-page: 64
  year: 2009
  end-page: 9
  article-title: Association of serum gamma‐glutamyltransferase and alanine aminotransferase activities with risk of type 2 diabetes mellitus independent of fatty liver
  publication-title: Diabetes Metab. Res. Rev.
– volume: 62
  start-page: S47
  issue: 1 Suppl
  year: 2015
  end-page: 64
  article-title: NAFLD: a multisystem disease
  publication-title: J. Hepatol.
– year: 2015
  article-title: Epidemiological modifiers of non‐alcoholic fatty liver disease: focus on high‐risk groups
  publication-title: Dig. Liver Dis.
– volume: 35
  start-page: 2401
  year: 2015
  end-page: 7
  article-title: Non‐alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five‐year cohort study
  publication-title: Liver Int.
– volume: 47
  start-page: 181
  year: 2015
  end-page: 90
  article-title: Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome
  publication-title: Dig. Liver Dis.
– volume: 28
  start-page: 142
  year: 2013
  end-page: 7
  article-title: Influence of non‐alcoholic fatty liver disease on the development of diabetes mellitus
  publication-title: J. Gastroenterol. Hepatol.
– volume: 106
  start-page: 15430
  year: 2009
  end-page: 5
  article-title: Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 2623
  year: 2004
  end-page: 32
  article-title: Elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study
  publication-title: Diabetes
– volume: 2
  start-page: 67
  year: 2013
  end-page: 75
  article-title: The association of metabolic syndrome and serum γ‐glutamyl transpeptidase: a 4‐year cohort study of 3,698 korean male workers
  publication-title: Clin. Nutr. Res.
– volume: 33
  start-page: 1406
  year: 2013
  end-page: 12
  article-title: Non‐alcoholic fatty liver disease independently predicts prediabetes during a 7‐year prospective follow‐up
  publication-title: Liver Int.
– volume: 66
  start-page: 692
  year: 2012
  end-page: 8
  article-title: Gamma‐glutamyltransferase levels and risk of metabolic syndrome: a meta‐analysis of prospective cohort studies
  publication-title: Int. J. Clin. Pract.
– volume: 9
  start-page: e96651
  year: 2014
  article-title: Prediction of metabolic syndrome by non‐alcoholic fatty liver disease in northern urban Han Chinese population: a prospective cohort study
  publication-title: PLoS One
– ident: e_1_2_5_12_1
  doi: 10.1111/j.1365-2796.2005.01572.x
– ident: e_1_2_5_5_1
  doi: 10.1016/j.jclinepi.2007.11.008
– ident: e_1_2_5_33_1
  doi: 10.1371/journal.pone.0096651
– ident: e_1_2_5_19_1
  doi: 10.2188/jea.13.15
– ident: e_1_2_5_6_1
  doi: 10.1002/sim.1186
– ident: e_1_2_5_16_1
  doi: 10.1002/dmrr.890
– ident: e_1_2_5_51_1
  doi: 10.1038/oby.2011.136
– ident: e_1_2_5_2_1
  doi: 10.1016/j.dld.2014.09.020
– ident: e_1_2_5_54_1
  doi: 10.7762/cnr.2013.2.1.67
– ident: e_1_2_5_55_1
  doi: 10.1111/dme.12315
– ident: e_1_2_5_35_1
  doi: 10.2337/diabetes.53.11.2855
– ident: e_1_2_5_24_1
  doi: 10.1038/ajg.2013.349
– ident: e_1_2_5_25_1
  doi: 10.1111/j.1440-1746.2012.07264.x
– ident: e_1_2_5_26_1
  doi: 10.1111/liv.12200
– ident: e_1_2_5_29_1
  doi: 10.1016/j.cca.2009.03.035
– ident: e_1_2_5_53_1
  doi: 10.1016/j.atherosclerosis.2013.01.029
– ident: e_1_2_5_75_1
  doi: 10.1210/jc.2013-1519
– ident: e_1_2_5_58_1
  doi: 10.1371/journal.pone.0080596
– ident: e_1_2_5_41_1
  doi: 10.1053/j.gastro.2008.09.018
– ident: e_1_2_5_3_1
  doi: 10.1016/j.jhep.2013.05.044
– ident: e_1_2_5_64_1
  doi: 10.1016/j.cgh.2015.01.027
– ident: e_1_2_5_17_1
  doi: 10.2337/diacare.27.6.1427
– ident: e_1_2_5_73_1
  doi: 10.1016/j.cmet.2015.09.023
– ident: e_1_2_5_49_1
  doi: 10.1038/ajg.2009.229
– ident: e_1_2_5_67_1
  doi: 10.1073/pnas.0904944106
– ident: e_1_2_5_9_1
  doi: 10.1038/ajg.2009.67
– ident: e_1_2_5_4_1
  doi: 10.3109/07853890.2010.518623
– ident: e_1_2_5_20_1
  doi: 10.1111/j.1440-1746.2006.04781.x
– ident: e_1_2_5_46_1
  doi: 10.1373/49.8.1358
– ident: e_1_2_5_18_1
  doi: 10.1186/1758-5996-6-14
– ident: e_1_2_5_22_1
  doi: 10.1111/j.1464-5491.2008.02410.x
– ident: e_1_2_5_72_1
  doi: 10.1016/j.jhep.2014.12.012
– ident: e_1_2_5_42_1
  doi: 10.2337/dc07-2159
– ident: e_1_2_5_38_1
  doi: 10.2337/diacare.28.7.1757
– ident: e_1_2_5_59_1
  doi: 10.1371/journal.pone.0096068
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1753-0407.2010.00111.x
– ident: e_1_2_5_34_1
  doi: 10.2337/diabetes.51.6.1889
– ident: e_1_2_5_45_1
  doi: 10.1111/dme.12187
– ident: e_1_2_5_15_1
  doi: 10.1016/j.metabol.2007.10.015
– ident: e_1_2_5_61_1
  doi: 10.1111/ijcp.12507
– ident: e_1_2_5_62_1
  doi: 10.1586/17474124.2015.1007955
– ident: e_1_2_5_14_1
  doi: 10.2337/dc07-2184
– ident: e_1_2_5_21_1
  doi: 10.2337/dc07-0792
– ident: e_1_2_5_68_1
  doi: 10.1038/oby.2010.90
– ident: e_1_2_5_74_1
  doi: 10.2337/dc15-0140
– ident: e_1_2_5_43_1
  doi: 10.2337/dc08-1870
– ident: e_1_2_5_40_1
  doi: 10.1038/oby.2007.218
– ident: e_1_2_5_66_1
  doi: 10.1002/hep.21327
– ident: e_1_2_5_63_1
  doi: 10.1111/liv.12840
– ident: e_1_2_5_76_1
  doi: 10.1002/14651858.CD003054.pub3
– ident: e_1_2_5_60_1
  doi: 10.1111/j.1742-1241.2012.02959.x
– ident: e_1_2_5_31_1
  doi: 10.4082/kjfm.2012.33.1.51
– ident: e_1_2_5_56_1
  doi: 10.1111/dme.12345
– ident: e_1_2_5_11_1
  doi: 10.1016/S1262-3636(07)70229-X
– ident: e_1_2_5_7_1
– ident: e_1_2_5_37_1
  doi: 10.2337/diacare.28.11.2812
– ident: e_1_2_5_8_1
  doi: 10.1016/j.diabet.2008.01.009
– ident: e_1_2_5_32_1
  doi: 10.1016/j.atherosclerosis.2013.01.002
– ident: e_1_2_5_70_1
  doi: 10.1073/pnas.1219456110
– ident: e_1_2_5_28_1
  doi: 10.2337/dc07-0440
– ident: e_1_2_5_71_1
  doi: 10.1194/jlr.M037952
– ident: e_1_2_5_65_1
  doi: 10.1016/j.dld.2015.08.004.
– ident: e_1_2_5_69_1
  doi: 10.1073/pnas.1113359108
– ident: e_1_2_5_39_1
  doi: 10.2337/dc07-0106
– ident: e_1_2_5_13_1
  doi: 10.2337/diacare.28.12.2913
– ident: e_1_2_5_50_1
  doi: 10.1016/j.metabol.2009.08.024
– ident: e_1_2_5_48_1
  doi: 10.1161/01.ATV.0000251993.20372.40
– ident: e_1_2_5_10_1
  doi: 10.1007/s00125-003-1036-5
– ident: e_1_2_5_52_1
  doi: 10.3346/jkms.2013.28.11.1603
– ident: e_1_2_5_36_1
  doi: 10.2337/diabetes.53.10.2623
– ident: e_1_2_5_27_1
  doi: 10.1111/liv.12851
– ident: e_1_2_5_44_1
  doi: 10.1186/1471-230X-10-56
– ident: e_1_2_5_57_1
  doi: 10.1089/met.2012.0147
– ident: e_1_2_5_23_1
  doi: 10.1002/hep.26183
– ident: e_1_2_5_47_1
  doi: 10.2337/diabetes.54.11.3140
SSID ssj0004075
Score 2.6439135
SecondaryResourceType review_article
Snippet Background and Aim: The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver...
The magnitude of the risk of incident type 2 diabetes (T2D) and metabolic syndrome (MetS) among patients with nonalcoholic fatty liver disease (NAFLD) is...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 936
SubjectTerms Alanine Transaminase - blood
ALT
Aspartate Aminotransferases - blood
AST
Biomarkers - blood
Chi-Square Distribution
Clinical Enzyme Tests
Diabetes
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - epidemiology
gamma-Glutamyltransferase - blood
GGT
Humans
Incidence
Liver enzymes
Metabolic Syndrome
Metabolic Syndrome - diagnosis
Metabolic Syndrome - epidemiology
NAFLD
Non-alcoholic Fatty Liver Disease - blood
Non-alcoholic Fatty Liver Disease - diagnostic imaging
Non-alcoholic Fatty Liver Disease - epidemiology
Prognosis
Risk Assessment
Risk Factors
Time Factors
Ultrasonography
Title Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis
URI https://api.istex.fr/ark:/67375/WNG-BMQ1W9RV-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.13264
https://www.ncbi.nlm.nih.gov/pubmed/26667191
https://www.proquest.com/docview/1785740070
Volume 31
WOSCitedRecordID wos000375089100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004075
  issn: 0815-9319
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC0lMwhxYYcMS1QghLg4ssftpcWJbRKhyQgiQubW6s3JiIkdjR2WG5_AF_ExfAnV3kKkICFxs-xqu-1-5a7qrnoF8ISxkGBgpOf7VnuMce0pE_metaFKwsgkmapJXKfJbJbO5_zdGjzvcmEafoh-wc1pRv2_dgouVfmnkh8ebZErFbN1GI4Jt9EAhq_3JvvTs7TIhmeXJr3I4wS1llioDuTpGp-bjobuy369yNY8b7rWc8_k2n_1-jpcbU1OfNFg5Aas2fwmXN5tN9Vvwc-Zs8brSrkLjZmsqm-4dOEa2O7e4KJE2Q6jNeiWblHmKJfHRVlh9aXIiqXBRe4M0JIEXLg6Fpk740qWkgg5uzjGbp2XGhs8thXhzz2xI03Ywq7EKbqkF5R4RjONTYpN3_LX9x-ypVO5DfuTNx9e7XhtWQdPhzxlnqW314ZLslVZ7OgAbciyUCpfak3eDw-4cnupcaYzcn4ixf1Mm7FimU1jQ9AJ78AgL3K7ARgEln4o2tAlyVRslRr7jFmZRjxNTRqO4Fk3ukK3nOeu9MZS9L7P4ZGox2MEj3vRk4bo4yKhpzVEegm5-uQi45JIHMy2xcvd98EB3_sopiN41GFIkL66TRiZ2-K0FEGSRokrRu-P4G4Drv5uZCzFCTnQ1O0aQ3_viHi7vVMf3Pt30ftwhay9uInWfACDanVqH8Il_blalKtNWE_m6WarQr8B5CIh7g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG2FDAIurCEMa4EQysWRPW4vLXFhmwzgsSDKdmv15mSUiY3GDgk3PoEv4mP4Eqq9hUhBQuJm2dV22_3KXdVd9YqQ55T6CAMtHNc1yqGUKUfqwHWM8WXkBzrKZE3imkRpGu_tsU9L5GWXC9PwQ_QLblYz6v-1VXC7IP2nlu8frKMvFdJLZEARRojvwdvN8XZylhfZEO3irBc4DLHWMgvVkTxd43Pz0cB-2tOLjM3ztms9-Yxv_F-3b5LrrdEJrxqU3CJLJr9NrkzbbfU75Gdq7fG6Vu5MQSaq6hvMbcAGtPs3MCtBtANpNNjFWxA5iPlRUVZQnRRZMdcwy60JWqKADViHIrNnbNFSFEF3F0bQrfRiYw1HpkIE2id2tAnr0BU5BZv2AgLOiKahSbLpW_76_kO0hCorZHv8buvNxGkLOzjKZzF1DL690kygtUpDSwhofJr5QrpCKfR_mMek3U0NM5Wh-xNI5mZKjyTNTBxqBI9_lyznRW7uEfA8g78UpfGSoDI0Uo5cSo2IAxbHOvaHZK0bXq5a1nNbfGPOe-9n_4DX4zEkz3rRLw3Vx0VCL2qM9BJicWhj46KA76Yb_PX0s7fLNnd4MiRPOxBx1Fi7DSNyUxyX3IviILLl6N0hWW3Q1d8NzaUwQhcau12D6O8d4R82JvXB_X8XfUKuTramCU_epx8fkGto-4VN7OZDslwtjs0jcll9rWbl4nGrSb8BUT0k9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG2FGRRxCTsMa4EQ4uLIHreXlrgAYRJgYoWILLdWr8koEzsaOyw3PoEv4mP4Eqq9hUhBQuJm2dV22_3KXdVd9YqQZ5SGCAMtPN83yqOUKU_qyPeMCWUSRjqxsiZxnSZZlu7vs60l8rLLhWn4IfoFN6cZ9f_aKbg50fZPLT84XEVfKqaXyJC6IjIDMlzbnuxMz_IiG6JdnPUijyHWWmahOpKna3xuPhq6T_v1ImPzvO1aTz6Tq__X7WtkpTU64VWDkutkyeQ3yPJmu61-k_zMnD1e18qdKbCiqr7B3AVsQLt_A7MSRDuQRoNbvAWRg5gfF2UF1ZfCFnMNs9yZoCUKuIB1KKw744qWogi6uzCGbqUXG2s4NhUi0D2xo01Yha7IKbi0FxBwRjQNTZJN3_LX9x-iJVS5RXYmbz-92fDawg6eCllKPYNvrzQTaK3S2BECmpDaUEhfKIX-DwuYdLupsVUW3Z9IMt8qPZbUmjTWCJ7wNhnkRW7uEggCg78UpfGSoDI2Uo59So1II5amOg1H5EU3vFy1rOeu-Mac997PwSGvx2NEnvaiJw3Vx0VCz2uM9BJiceRi45KI72Xr_PXmx2CPbe_y6Yg86UDEUWPdNozITXFa8iBJo8SVo_dH5E6Drv5uaC7FCbrQ2O0aRH_vCH-_vlEf3Pt30cdkeWttwqfvsg_3yRU0_eImdPMBGVSLU_OQXFafq1m5eNQq0m-ojSRx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonalcoholic+fatty+liver+disease+is+associated+with+an+almost+twofold+increased+risk+of+incident+type+2+diabetes+and+metabolic+syndrome.+Evidence+from+a+systematic+review+and+meta%E2%80%90analysis&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Ballestri%2C+Stefano&rft.au=Zona%2C+Stefano&rft.au=Targher%2C+Giovanni&rft.au=Romagnoli%2C+Dante&rft.date=2016-05-01&rft.issn=0815-9319&rft.eissn=1440-1746&rft.volume=31&rft.issue=5&rft.spage=936&rft.epage=944&rft_id=info:doi/10.1111%2Fjgh.13264&rft.externalDBID=10.1111%252Fjgh.13264&rft.externalDocID=JGH13264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon