A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems

We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 75; číslo 1; s. 263 - 290
Hlavní autoři: de Carvalho Bento, Glaydston, Bitar, Sandro Dimy Barbosa, da Cruz Neto, João Xavier, Soubeyran, Antoine, de Oliveira Souza, João Carlos
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2020
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-019-00139-0