Long-memory recursive prediction error method for identification of continuous-time fractional models

This paper deals with recursive continuous-time system identification using fractional-order models. Long-memory recursive prediction error method is proposed for recursive estimation of all parameters of fractional-order models. When differentiation orders are assumed known, least squares and predi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 110; číslo 1; s. 635 - 648
Hlavní autori: Victor, Stéphane, Duhé, Jean-François, Melchior, Pierre, Abdelmounen, Youssef, Roubertie, François
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.09.2022
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper deals with recursive continuous-time system identification using fractional-order models. Long-memory recursive prediction error method is proposed for recursive estimation of all parameters of fractional-order models. When differentiation orders are assumed known, least squares and prediction error methods, being direct extensions to fractional-order models of the classic methods used for integer-order models, are compared to our new method, the long-memory recursive prediction error method. Given the long-memory property of fractional models, Monte Carlo simulations prove the efficiency of our proposed algorithm. Then, when the differentiation orders are unknown, two-stage algorithms are necessary for both parameter and differentiation-order estimation. The performances of the new proposed recursive algorithm are studied through Monte Carlo simulations. Finally, the proposed algorithm is validated on a biological example where heat transfers in lungs are modeled by using thermal two-port network formalism with fractional models.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-022-07628-8