Long-memory recursive prediction error method for identification of continuous-time fractional models
This paper deals with recursive continuous-time system identification using fractional-order models. Long-memory recursive prediction error method is proposed for recursive estimation of all parameters of fractional-order models. When differentiation orders are assumed known, least squares and predi...
Uložené v:
| Vydané v: | Nonlinear dynamics Ročník 110; číslo 1; s. 635 - 648 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2022
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper deals with recursive continuous-time system identification using fractional-order models. Long-memory recursive prediction error method is proposed for recursive estimation of all parameters of fractional-order models. When differentiation orders are assumed known, least squares and prediction error methods, being direct extensions to fractional-order models of the classic methods used for integer-order models, are compared to our new method, the long-memory recursive prediction error method. Given the long-memory property of fractional models, Monte Carlo simulations prove the efficiency of our proposed algorithm. Then, when the differentiation orders are unknown, two-stage algorithms are necessary for both parameter and differentiation-order estimation. The performances of the new proposed recursive algorithm are studied through Monte Carlo simulations. Finally, the proposed algorithm is validated on a biological example where heat transfers in lungs are modeled by using thermal two-port network formalism with fractional models. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-090X 1573-269X |
| DOI: | 10.1007/s11071-022-07628-8 |