Algorithmic complexity of Greenberg’s conjecture

Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture ( λ = μ = 0 ) is governed (under Leopoldt’s conjecture) by the finite torsion group T k of the Galois group of the maximal abelian p -ramified pro- p -extension of  k , by means of images, in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Archiv der Mathematik Ročník 117; číslo 3; s. 277 - 289
Hlavní autor: Gras, Georges
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.09.2021
Springer Nature B.V
Témata:
ISSN:0003-889X, 1420-8938
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let k be a totally real number field and p a prime. We show that the “complexity” of Greenberg’s conjecture ( λ = μ = 0 ) is governed (under Leopoldt’s conjecture) by the finite torsion group T k of the Galois group of the maximal abelian p -ramified pro- p -extension of  k , by means of images, in T k , of ideal norms from the layers k n of the cyclotomic tower (Theorem 4.2 ). These images are obtained via the algorithm computing, by “unscrewing”, the p -class group of k n . Conjecture 4.3 of equidistribution of these images would show that the number of steps b n of the algorithms is bounded as n → ∞ , so that (Theorem 3.3 ) Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s theory, would hold true “with probability 1”.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-021-01618-9