Working principles, behavior, and performance of MOEAs on MNK-landscapes

This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 181; číslo 3; s. 1670 - 1690
Hlavní autori: Aguirre, Hernán E., Tanaka, Kiyoshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.09.2007
Elsevier
Elsevier Sequoia S.A
Edícia:European Journal of Operational Research
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2006.08.004