Working principles, behavior, and performance of MOEAs on MNK-landscapes

This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 181; H. 3; S. 1670 - 1690
Hauptverfasser: Aguirre, Hernán E., Tanaka, Kiyoshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.09.2007
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2006.08.004