Working principles, behavior, and performance of MOEAs on MNK-landscapes

This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 181; no. 3; pp. 1670 - 1690
Main Authors: Aguirre, Hernán E., Tanaka, Kiyoshi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.09.2007
Elsevier
Elsevier Sequoia S.A
Series:European Journal of Operational Research
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs.
AbstractList This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs.
This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs. [PUBLICATION ABSTRACT]
Author Aguirre, Hernán E.
Tanaka, Kiyoshi
Author_xml – sequence: 1
  givenname: Hernán E.
  surname: Aguirre
  fullname: Aguirre, Hernán E.
  email: ahernan@shinshu-u.ac.jp
– sequence: 2
  givenname: Kiyoshi
  surname: Tanaka
  fullname: Tanaka, Kiyoshi
  email: ktanaka@shinshu-u.ac.jp
BackLink http://econpapers.repec.org/article/eeeejores/v_3a181_3ay_3a2007_3ai_3a3_3ap_3a1670-1690.htm$$DView record in RePEc
BookMark eNp9UcFu1DAUtFCRui38QE8R5yY824ntlbhUVaEVXXoBcbQc54U67NrBTlfq3_etFnHgUEvjd_DMPHnmjJ3EFJGxCw4NB64-Tg1OKTcCQDVgGoD2DVtxo0WtjIITtgKpdS0E16fsrJQJAHjHuxW7_Zny7xB_VXMO0Yd5i-Wy6vHR7UPKl5WLQzVjHlPeueixSmO1ebi5KlWK1ebb13pLhOLdjOUdezu6bcH3f-c5-_H55vv1bX3_8OXu-uq-9nKtlxrFoLjqR-cHNyopBi-Vbz2i6NH0RqJ3bgTVCtN1ssdBjBqkJEXbrUHgWp6zD0ffOac_T1gWO6WnHGmlFdBK0EIJIm2OpIwzekt_27n8bJEOxYTF7q103HC6nwkUm6YRCJIwHx6VBsvVGuzjsiM_cfTzOZWScfxnyYlFBdjJHpztoQALxlIBJDL_iXxY3BJSXLIL29eln45SpCT3AbMtPiAVMISMfrFDCq_JXwDS6KIt
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s00521_023_09145_0
crossref_primary_10_1007_s42452_019_0208_y
crossref_primary_10_1109_TCYB_2014_2310651
crossref_primary_10_1109_TEVC_2017_2655451
crossref_primary_10_1007_s10732_015_9301_6
crossref_primary_10_20965_jaciii_2010_p0618
crossref_primary_10_1007_s10878_019_00445_7
crossref_primary_10_1016_j_ejor_2014_09_033
crossref_primary_10_1145_3612933
crossref_primary_10_1007_s10732_017_9361_x
crossref_primary_10_1007_s10732_021_09469_x
crossref_primary_10_1016_j_asoc_2023_110061
crossref_primary_10_1007_s12065_009_0031_2
crossref_primary_10_1016_j_asoc_2018_08_039
crossref_primary_10_1007_s42979_025_03899_1
crossref_primary_10_1016_j_neucom_2014_06_076
crossref_primary_10_1016_j_ejor_2012_12_019
crossref_primary_10_1016_j_ejor_2014_05_040
crossref_primary_10_1016_j_future_2012_09_009
crossref_primary_10_1002_cpe_2839
crossref_primary_10_1109_TEVC_2022_3208595
crossref_primary_10_1145_2792984
crossref_primary_10_1016_j_swevo_2025_101933
crossref_primary_10_1155_2021_6699277
crossref_primary_10_1109_TNNLS_2015_2388511
crossref_primary_10_1109_TEVC_2022_3205165
crossref_primary_10_1016_j_asoc_2020_106269
crossref_primary_10_1007_s10472_012_9293_y
crossref_primary_10_1109_TEVC_2014_2366498
crossref_primary_10_1016_j_future_2014_10_031
crossref_primary_10_1016_j_swevo_2019_04_005
crossref_primary_10_1016_j_swevo_2023_101350
crossref_primary_10_1162_evco_a_00193
crossref_primary_10_1016_j_cor_2022_105857
crossref_primary_10_1109_TEVC_2019_2940828
crossref_primary_10_1007_s12293_014_0133_y
crossref_primary_10_3354_meps13689
crossref_primary_10_1109_TEVC_2021_3084119
crossref_primary_10_1155_2017_9094514
crossref_primary_10_1007_s00500_015_1842_y
crossref_primary_10_1016_j_swevo_2024_101722
crossref_primary_10_1016_j_swevo_2025_102136
Cites_doi 10.1007/3-540-45356-3_83
10.1007/BF01759923
10.1109/TEVC.2003.810761
10.1109/TEVC.2003.810758
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Sep 16, 2007
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Sep 16, 2007
DBID AAYXX
CITATION
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2006.08.004
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 1690
ExternalDocumentID 1254195931
eeeejores_v_3a181_3ay_3a2007_3ai_3a3_3ap_3a1670_1690_htm
10_1016_j_ejor_2006_08_004
S0377221706005455
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c397t-e2d616bfacdaf632dc36c4cee2be8b83ecaaf06428553bed2f703316b45902e93
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246290600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Fri Jul 25 05:03:05 EDT 2025
Wed Aug 18 03:50:56 EDT 2021
Sat Nov 29 01:40:49 EST 2025
Tue Nov 18 22:28:25 EST 2025
Fri Feb 23 02:34:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Non-linear multiobjective fitness functions
Evolutionary computations
Multiobjective evolutionary algorithms
Multiobjective combinatorial optimization
Recombination
MNK-landscapes
Selection
Epistasis
Drift
Discrete binary search spaces
Mutation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c397t-e2d616bfacdaf632dc36c4cee2be8b83ecaaf06428553bed2f703316b45902e93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204307262
PQPubID 45678
PageCount 21
ParticipantIDs proquest_journals_204307262
repec_primary_eeeejores_v_3a181_3ay_3a2007_3ai_3a3_3ap_3a1670_1690_htm
crossref_primary_10_1016_j_ejor_2006_08_004
crossref_citationtrail_10_1016_j_ejor_2006_08_004
elsevier_sciencedirect_doi_10_1016_j_ejor_2006_08_004
PublicationCentury 2000
PublicationDate 2007-09-16
PublicationDateYYYYMMDD 2007-09-16
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Aguirre, Tanaka (bib6) 2005; vol. 3410
Watanabe, S., Hiroyasu, T., Miki, M., 2002. Neighborhood cultivation genetic algorithm for multiobjective optimization problems. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 198–202.
Zitzler, E., Laumanns, M., Thiele, 2001. L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, TIK-Report.
Deb, Thiele, Laumanns, Zitzler (bib15) 2002
Smith, Smith (bib32) 1999; 5
Knowles, Corne (bib25) 2002
De Jong, Potter, Spears (bib12) 1997
Merz, Freisleben (bib30) 1998
Day, Lamont (bib11) 2005; vol. 3410
Deb (bib14) 2001
Fleischer (bib16) 2003; vol. 2632
Manderick, de Weger, Spiessens (bib29) 1991
Khan, N., 2003. Bayesian Optimization Algorithms for Multiobjective and Hierarchically Difficult Problems. Master thesis, University of Illinois at Urbana-Champaign.
Altenberg (bib1) 1994
Aguirre, Tanaka (bib5) 2004
Kauffman (bib24) 1993
Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology, Zurich.
Ishibuchi, Shibata (bib21) 2003; vol. 2632
Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of 5th International Conference on Genetic Algorithms, pp. 416–423.
Holland (bib19) 1975
Thierens, Goldberg, Pereira (bib33) 1998
Bosman, Thierens (bib7) 2003; 7
Heckendorn, Rana, Whitley (bib18) 1999; 5
Aguirre, Tanaka (bib3) 2003; vol. 2611
Ishibuchi, Shibata (bib23) 2004; vol. 3102
Davidor (bib9) 1991; 5
Kim, Hiroyasu, Miki, Watanabe (bib28) 2004; vol. 3242
Day, Kleeman, Lamont (bib10) 2004; 2
Aguirre, Tanaka (bib4) 2004
Coello, Van Veldhuizen, Lamont (bib8) 2002
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. 2000. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001.
Khan, N., Goldberg, D., Pelikan, M., 2002. Multi-Objective Bayesian Optimization Algorithm. ILLiGAL Report 2002009. University of Illinois at Urbana-Champaign.
Hajela, Lin (bib20) 1992; 4
Ishibuchi, Shibata (bib22) 2003; vol. 2723
Mathias, Eshelman, Schaffer (bib31) 2001; 6
Altenberg (bib2) 1997
Zitzler, Thiele, Laumanns, Fonseca, Grunert da Fonseca (bib35) 2003; 7
Smith (10.1016/j.ejor.2006.08.004_bib32) 1999; 5
10.1016/j.ejor.2006.08.004_bib37
10.1016/j.ejor.2006.08.004_bib13
Manderick (10.1016/j.ejor.2006.08.004_bib29) 1991
10.1016/j.ejor.2006.08.004_bib36
10.1016/j.ejor.2006.08.004_bib17
Hajela (10.1016/j.ejor.2006.08.004_bib20) 1992; 4
Knowles (10.1016/j.ejor.2006.08.004_bib25) 2002
Deb (10.1016/j.ejor.2006.08.004_bib15) 2002
Ishibuchi (10.1016/j.ejor.2006.08.004_bib22) 2003; vol. 2723
Aguirre (10.1016/j.ejor.2006.08.004_bib6) 2005; vol. 3410
Day (10.1016/j.ejor.2006.08.004_bib11) 2005; vol. 3410
Kauffman (10.1016/j.ejor.2006.08.004_bib24) 1993
Thierens (10.1016/j.ejor.2006.08.004_bib33) 1998
Heckendorn (10.1016/j.ejor.2006.08.004_bib18) 1999; 5
Ishibuchi (10.1016/j.ejor.2006.08.004_bib21) 2003; vol. 2632
Coello (10.1016/j.ejor.2006.08.004_bib8) 2002
Fleischer (10.1016/j.ejor.2006.08.004_bib16) 2003; vol. 2632
Aguirre (10.1016/j.ejor.2006.08.004_bib3) 2003; vol. 2611
10.1016/j.ejor.2006.08.004_bib34
Altenberg (10.1016/j.ejor.2006.08.004_bib2) 1997
Altenberg (10.1016/j.ejor.2006.08.004_bib1) 1994
10.1016/j.ejor.2006.08.004_bib26
10.1016/j.ejor.2006.08.004_bib27
Deb (10.1016/j.ejor.2006.08.004_bib14) 2001
Holland (10.1016/j.ejor.2006.08.004_bib19) 1975
Zitzler (10.1016/j.ejor.2006.08.004_bib35) 2003; 7
Kim (10.1016/j.ejor.2006.08.004_bib28) 2004; vol. 3242
Day (10.1016/j.ejor.2006.08.004_bib10) 2004; 2
Mathias (10.1016/j.ejor.2006.08.004_bib31) 2001; 6
Aguirre (10.1016/j.ejor.2006.08.004_bib5) 2004
De Jong (10.1016/j.ejor.2006.08.004_bib12) 1997
Aguirre (10.1016/j.ejor.2006.08.004_bib4) 2004
Bosman (10.1016/j.ejor.2006.08.004_bib7) 2003; 7
Ishibuchi (10.1016/j.ejor.2006.08.004_bib23) 2004; vol. 3102
Merz (10.1016/j.ejor.2006.08.004_bib30) 1998
Davidor (10.1016/j.ejor.2006.08.004_bib9) 1991; 5
References_xml – start-page: 711
  year: 2002
  end-page: 716
  ident: bib25
  article-title: On metrics for comparing non-dominated sets
  publication-title: Proceedings of the 2002 IEEE Congress on Evolutionary Computation CEC’2002
– volume: 2
  year: 2004
  ident: bib10
  publication-title: Multi-Objective Fast Messy Genetic Algorithm Solving Deception Problems
– volume: 5
  year: 1999
  ident: bib32
  publication-title: An Examination of Tunable, Random Search Landscapes
– start-page: 196
  year: 2004
  end-page: 203
  ident: bib4
  article-title: Insights on properties of multiobjective MNK-landscapes
  publication-title: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC’2004)
– volume: vol. 3410
  start-page: 296
  year: 2005
  end-page: 310
  ident: bib11
  article-title: Extended multiobjective fast messy genetic algorithm solving deception problems
  publication-title: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005)
– volume: vol. 3102
  start-page: 1259
  year: 2004
  end-page: 1271
  ident: bib23
  article-title: Mating scheme for controlling the diversity-convergence balance for multiobjective optimization
  publication-title: Proceedings of the 2003 Genetic and Evolutionary Computation Conference (GECCO 2004)
– volume: vol. 3242
  start-page: 742
  year: 2004
  end-page: 751
  ident: bib28
  article-title: SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2
  publication-title: Proceedings of 8th International Conference on Parallel Problem Solving from Nature (PPSN-VIII)
– year: 1997
  ident: bib2
  article-title: Fitness Landscapes: NK Landscapes, shape Handbook of Evolutionary Computation
– start-page: 449
  year: 2004
  end-page: 456
  ident: bib5
  article-title: Effects of elitism and population climbing on multiobjective MNK-landscapes
  publication-title: Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC’2004)
– start-page: 143
  year: 1991
  end-page: 150
  ident: bib29
  article-title: The genetic algorithm and the structure of the fitness landscape
  publication-title: Proceedings of the 4th International Conference on Genetic Algorithms
– year: 2002
  ident: bib8
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– reference: Khan, N., Goldberg, D., Pelikan, M., 2002. Multi-Objective Bayesian Optimization Algorithm. ILLiGAL Report 2002009. University of Illinois at Urbana-Champaign.
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib7
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: vol. 2723
  start-page: 1065
  year: 2003
  end-page: 1076
  ident: bib22
  article-title: A similarity-based mating scheme for evolutionary multiobjective optimization
  publication-title: Proceedings of the 2003 Genetic and Evolutionary Computation Conference (GECCO 2003)
– volume: vol. 3410
  start-page: 355
  year: 2005
  end-page: 369
  ident: bib6
  article-title: Selection, drift, recombination, and mutation in multiobjective evolutionary algorithms on scalable MNK-landscapes
  publication-title: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005)
– start-page: 741
  year: 1998
  end-page: 745
  ident: bib30
  article-title: On the effectiveness of evolutionary search in high-dimensional NK-landscapes
  publication-title: Proceedings of the 1998 IEEE Congress on Evolutionary Computation (CEC’1998)
– volume: 5
  year: 1999
  ident: bib18
  publication-title: Test Function Generators as Embedded Landscapes
– start-page: 338
  year: 1997
  end-page: 345
  ident: bib12
  article-title: Using problem generators to explore the effects of epistasis
  publication-title: Proceedings of the 7th International Conference on Genetic Algorithms
– reference: Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. 2000. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001.
– year: 2001
  ident: bib14
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– start-page: 535
  year: 1998
  end-page: 540
  ident: bib33
  article-title: Domino convergence, drift and the temporal salience structure of problems
  publication-title: Proceedings of the 1988 IEEE Congress on Evolutionary Computation (CEC 1998)
– volume: 5
  year: 1991
  ident: bib9
  publication-title: Epistasis Variance: A Viewpoint of GA-Hardness
– year: 1975
  ident: bib19
  article-title: Adaptation in Natural and Artificial Systems
– start-page: 825
  year: 2002
  end-page: 830
  ident: bib15
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the IEEE 2002 Congress on Evolutionary Computation (CEC’2002)
– volume: vol. 2632
  start-page: 433
  year: 2003
  end-page: 447
  ident: bib21
  article-title: An empirical study on the effect of mating restriction on the search ability of EMO algorithms
  publication-title: Proceedings of the 2nd International Conference on Evolutionary Multicriterion Optimization (EMO 2003)
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib35
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 6
  year: 2001
  ident: bib31
  publication-title: Niches in NK-landscapes
– reference: Watanabe, S., Hiroyasu, T., Miki, M., 2002. Neighborhood cultivation genetic algorithm for multiobjective optimization problems. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 198–202.
– start-page: 182
  year: 1994
  end-page: 187
  ident: bib1
  article-title: Evolving better representations through selective genome growth
  publication-title: Proceedings of the 1st IEEE Congress on Evolutionary Computation
– volume: vol. 2632
  start-page: 519
  year: 2003
  end-page: 533
  ident: bib16
  article-title: The measure of Pareto optima: Applications to multi-objective metaheuristics
  publication-title: Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003)
– reference: Khan, N., 2003. Bayesian Optimization Algorithms for Multiobjective and Hierarchically Difficult Problems. Master thesis, University of Illinois at Urbana-Champaign.
– reference: Zitzler, E., Laumanns, M., Thiele, 2001. L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, TIK-Report.
– volume: 4
  start-page: 99
  year: 1992
  end-page: 107
  ident: bib20
  article-title: Genetic search strategies in multicriterion optimal design
  publication-title: Structural Optimization
– year: 1993
  ident: bib24
  article-title: The Origins of Order: Self-Organization and Selection in Evolution
– volume: vol. 2611
  start-page: 131
  year: 2003
  end-page: 142
  ident: bib3
  article-title: Genetic algorithms on NK-landscapes: Effects of selection, drift, mutation, and recombination
  publication-title: Proceedings of the Third European Workshop on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2003)
– reference: Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of 5th International Conference on Genetic Algorithms, pp. 416–423.
– reference: Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology, Zurich.
– start-page: 338
  year: 1997
  ident: 10.1016/j.ejor.2006.08.004_bib12
  article-title: Using problem generators to explore the effects of epistasis
– ident: 10.1016/j.ejor.2006.08.004_bib13
  doi: 10.1007/3-540-45356-3_83
– volume: 4
  start-page: 99
  year: 1992
  ident: 10.1016/j.ejor.2006.08.004_bib20
  article-title: Genetic search strategies in multicriterion optimal design
  publication-title: Structural Optimization
  doi: 10.1007/BF01759923
– ident: 10.1016/j.ejor.2006.08.004_bib27
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib7
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810761
– volume: 5
  year: 1991
  ident: 10.1016/j.ejor.2006.08.004_bib9
– year: 1975
  ident: 10.1016/j.ejor.2006.08.004_bib19
– volume: 5
  year: 1999
  ident: 10.1016/j.ejor.2006.08.004_bib32
– start-page: 182
  year: 1994
  ident: 10.1016/j.ejor.2006.08.004_bib1
  article-title: Evolving better representations through selective genome growth
– volume: 6
  year: 2001
  ident: 10.1016/j.ejor.2006.08.004_bib31
– volume: 2
  year: 2004
  ident: 10.1016/j.ejor.2006.08.004_bib10
– ident: 10.1016/j.ejor.2006.08.004_bib34
– ident: 10.1016/j.ejor.2006.08.004_bib17
– ident: 10.1016/j.ejor.2006.08.004_bib36
– start-page: 741
  year: 1998
  ident: 10.1016/j.ejor.2006.08.004_bib30
  article-title: On the effectiveness of evolutionary search in high-dimensional NK-landscapes
– volume: vol. 2611
  start-page: 131
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib3
  article-title: Genetic algorithms on NK-landscapes: Effects of selection, drift, mutation, and recombination
– start-page: 143
  year: 1991
  ident: 10.1016/j.ejor.2006.08.004_bib29
  article-title: The genetic algorithm and the structure of the fitness landscape
– start-page: 449
  year: 2004
  ident: 10.1016/j.ejor.2006.08.004_bib5
  article-title: Effects of elitism and population climbing on multiobjective MNK-landscapes
– year: 2001
  ident: 10.1016/j.ejor.2006.08.004_bib14
– volume: vol. 2632
  start-page: 433
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib21
  article-title: An empirical study on the effect of mating restriction on the search ability of EMO algorithms
– ident: 10.1016/j.ejor.2006.08.004_bib26
– volume: vol. 3410
  start-page: 355
  year: 2005
  ident: 10.1016/j.ejor.2006.08.004_bib6
  article-title: Selection, drift, recombination, and mutation in multiobjective evolutionary algorithms on scalable MNK-landscapes
– volume: vol. 3242
  start-page: 742
  year: 2004
  ident: 10.1016/j.ejor.2006.08.004_bib28
  article-title: SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2
– start-page: 711
  year: 2002
  ident: 10.1016/j.ejor.2006.08.004_bib25
  article-title: On metrics for comparing non-dominated sets
– volume: vol. 2723
  start-page: 1065
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib22
  article-title: A similarity-based mating scheme for evolutionary multiobjective optimization
– volume: vol. 3102
  start-page: 1259
  year: 2004
  ident: 10.1016/j.ejor.2006.08.004_bib23
  article-title: Mating scheme for controlling the diversity-convergence balance for multiobjective optimization
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib35
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– volume: vol. 3410
  start-page: 296
  year: 2005
  ident: 10.1016/j.ejor.2006.08.004_bib11
  article-title: Extended multiobjective fast messy genetic algorithm solving deception problems
– volume: vol. 2632
  start-page: 519
  year: 2003
  ident: 10.1016/j.ejor.2006.08.004_bib16
  article-title: The measure of Pareto optima: Applications to multi-objective metaheuristics
– ident: 10.1016/j.ejor.2006.08.004_bib37
– year: 1997
  ident: 10.1016/j.ejor.2006.08.004_bib2
– year: 1993
  ident: 10.1016/j.ejor.2006.08.004_bib24
– start-page: 196
  year: 2004
  ident: 10.1016/j.ejor.2006.08.004_bib4
  article-title: Insights on properties of multiobjective MNK-landscapes
– year: 2002
  ident: 10.1016/j.ejor.2006.08.004_bib8
– volume: 5
  year: 1999
  ident: 10.1016/j.ejor.2006.08.004_bib18
– start-page: 825
  year: 2002
  ident: 10.1016/j.ejor.2006.08.004_bib15
  article-title: Scalable multi-objective optimization test problems
– start-page: 535
  year: 1998
  ident: 10.1016/j.ejor.2006.08.004_bib33
  article-title: Domino convergence, drift and the temporal salience structure of problems
SSID ssj0001515
Score 2.219686
Snippet This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1670
SubjectTerms Algorithms
Discrete binary search spaces
Drift
Epistasis
Evolution & development
Evolutionary computations
MNK-landscapes
Multiobjective combinatorial optimization
Multiobjective evolutionary algorithms
Mutation
Non-linear multiobjective fitness functions
Recombination
Selection
Studies
Title Working principles, behavior, and performance of MOEAs on MNK-landscapes
URI https://dx.doi.org/10.1016/j.ejor.2006.08.004
http://econpapers.repec.org/article/eeeejores/v_3a181_3ay_3a2007_3ai_3a3_3ap_3a1670-1690.htm
https://www.proquest.com/docview/204307262
Volume 181
WOSCitedRecordID wos000246290600051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKihA88FFAKwPkB962TI2dxMljhTqVrw6hgvpmxamztWxplHTV9ifyX3GO7dQgNgGCSnYrN84lvl98l_OdD6FXUuUkDH3qsSAUXiAC30vTVHiAHxEGPhFJY8z58p5NJvFslnzsdL7ZWJjNGSuK-PIyKf8rq6ENmK1CZ_-A3e1JoQF-A9OhBrZD_VuMN-bv_dKa0RtO2XB8661ZOgEDygvmeDRsFg4-TN55Tfivcoyqr7XbGx0WGiprTTTbBrXm5WlapF91wNnialWfLlpsnVwsKm36HjdWbBMNoUZH1ls6jq587ND55NKx9gqmnCt0OKU2ohmJ78xzlDGPEB3CeSj1PBwz4kWxTjWwnah9B5HUmXb9SGcfMSJcLf39UjxoS8XyUC5XlVmIUq60wVYYti6KEj5wlKz5htMUSEN9BUXdEnwtoFAopfoTqHNFk5-uz2-hLmFhAjKiO3wzmr1t1QKlOTZLWuZuTQSXdjb8-YKu05Kct6BuJUuZOcrQ9CG6bziDhxp9j1BHFj10xwZR9NADmywEG9nRQ_ecnS8fo7FBKd6i9ABbjB5gACB2EIpXOW4QilcF_hGhT9Dno9H09dgzST28DFTftSfJPPIjkafZPM0jSuYZjbIAVDUiZCxiKrM0zZu34jCkQs5JDjKJQo9AbTQkE_oU7RSrQu4iDONOyYBkoIRFShQlJBZSCkbSgGV5MOgj3w4iz8yO9yrxyhm3ro1LrgZepWKNuMrGOgj6aL_tU-r9Xm48OrS84UZj1ZooB8Td2G_PMpKbh7bmKkp9wEhE-uio4W17AX-LxWf_6kR76O72UX6OdtbVhXyBbmeb9aKuXhqkfweY_-KD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+principles%2C+behavior%2C+and+performance+of+MOEAs+on+MNK-landscapes&rft.jtitle=European+journal+of+operational+research&rft.au=Tanaka%2C+Kiyoshi&rft.au=Aguirre%2C+Hernan+E&rft.series=European+Journal+of+Operational+Research&rft.date=2007-09-16&rft.pub=Elsevier&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=181&rft.issue=3&rft.spage=1670&rft.epage=1690&rft_id=info:doi/10.1016%2Fj.ejor.2006.08.004&rft.externalDocID=eeeejores_v_3a181_3ay_3a2007_3ai_3a3_3ap_3a1670_1690_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon