Algorithmic Reduction of Biological Networks with Multiple Time Scales

We present a symbolic algorithmic approach that allows to compute invariant manifolds and corresponding reduced systems for differential equations modeling biological networks which comprise chemical reaction networks for cellular biochemistry, and compartmental models for pharmacology, epidemiology...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics in computer science Ročník 15; číslo 3; s. 499 - 534
Hlavní autoři: Kruff, Niclas, Lüders, Christoph, Radulescu, Ovidiu, Sturm, Thomas, Walcher, Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.09.2021
Springer Nature B.V
Springer
Témata:
ISSN:1661-8270, 1661-8289
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a symbolic algorithmic approach that allows to compute invariant manifolds and corresponding reduced systems for differential equations modeling biological networks which comprise chemical reaction networks for cellular biochemistry, and compartmental models for pharmacology, epidemiology and ecology. Multiple time scales of a given network are obtained by scaling, based on tropical geometry. Our reduction is mathematically justified within a singular perturbation setting. The existence of invariant manifolds is subject to hyperbolicity conditions, for which we propose an algorithmic test based on Hurwitz criteria. We finally obtain a sequence of nested invariant manifolds and respective reduced systems on those manifolds. Our theoretical results are generally accompanied by rigorous algorithmic descriptions suitable for direct implementation based on existing off-the-shelf software systems, specifically symbolic computation libraries and Satisfiability Modulo Theories solvers. We present computational examples taken from the well-known BioModels database using our own prototypical implementations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-021-00515-2