The imperative of physics-based modeling and inverse theory in computational science
To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
Uloženo v:
| Vydáno v: | Nature Computational Science Ročník 1; číslo 3; s. 166 - 168 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Nature Publishing Group
01.03.2021
|
| Témata: | |
| ISSN: | 2662-8457, 2662-8457 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2662-8457 2662-8457 |
| DOI: | 10.1038/s43588-021-00040-z |