The imperative of physics-based modeling and inverse theory in computational science

To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature Computational Science Ročník 1; číslo 3; s. 166 - 168
Hlavní autoři: Willcox, Karen E., Ghattas, Omar, Heimbach, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.03.2021
Témata:
ISSN:2662-8457, 2662-8457
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-021-00040-z