The imperative of physics-based modeling and inverse theory in computational science

To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science Jg. 1; H. 3; S. 166 - 168
Hauptverfasser: Willcox, Karen E., Ghattas, Omar, Heimbach, Patrick
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Nature Publishing Group 01.03.2021
Schlagworte:
ISSN:2662-8457, 2662-8457
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2662-8457
2662-8457
DOI:10.1038/s43588-021-00040-z