The imperative of physics-based modeling and inverse theory in computational science
To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
Gespeichert in:
| Veröffentlicht in: | Nature Computational Science Jg. 1; H. 3; S. 166 - 168 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Nature Publishing Group
01.03.2021
|
| Schlagworte: | |
| ISSN: | 2662-8457, 2662-8457 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2662-8457 2662-8457 |
| DOI: | 10.1038/s43588-021-00040-z |