The imperative of physics-based modeling and inverse theory in computational science

To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature Computational Science Ročník 1; číslo 3; s. 166 - 168
Hlavní autoři: Willcox, Karen E., Ghattas, Omar, Heimbach, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Nature Publishing Group 01.03.2021
Témata:
ISSN:2662-8457, 2662-8457
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
AbstractList To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process. Inverse theory provides a crucial perspective for addressing the challenges of ill-posedness, uncertainty, nonlinearity and under-sampling.
Author Willcox, Karen E.
Heimbach, Patrick
Ghattas, Omar
Author_xml – sequence: 1
  givenname: Karen E.
  orcidid: 0000-0003-2156-9338
  surname: Willcox
  fullname: Willcox, Karen E.
– sequence: 2
  givenname: Omar
  surname: Ghattas
  fullname: Ghattas, Omar
– sequence: 3
  givenname: Patrick
  orcidid: 0000-0003-3925-6161
  surname: Heimbach
  fullname: Heimbach, Patrick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38183195$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofv8BDxLw4qWar7bJUcQvELys55BNJm6kbWrSCru_3uquIh48zQw87zDMc4C2u9gBQieUXFDC5WUWvJSyIIwWhBBBitUW2mdVxQopynr7V7-HjnN-nSBWUk4qvov2uKSSU1Xuo9lsATi0PSQzhHfA0eN-sczB5mJuMjjcRgdN6F6w6RwO3TukDHhYQEzLacQ2tv04TNnYmQZnG6CzcIR2vGkyHG_qIXq-vZld3xePT3cP11ePheWqHorKO-8dKCpUKSxhghLKPSEld05YVkvmhXLEl9yoWlpaO694TZmj1HtTSX6Iztd7-xTfRsiDbkO20DSmgzhmzRSTStWEfKJnf9DXOKbp5qw5Y6VSVS3oRJ1uqHHegtN9Cq1JS_39rwlga8CmmHMC_4NQoj-96LUXPXnRX170agrJPyEb1i8bkgnNf9EPCvGRGw
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1016_j_commatsci_2023_112432
crossref_primary_10_1038_s41524_021_00670_x
crossref_primary_10_5194_hess_29_2445_2025
crossref_primary_10_1002_ail2_107
crossref_primary_10_1109_TIE_2024_3472313
crossref_primary_10_1007_s00521_023_08347_w
crossref_primary_10_1109_TPEL_2022_3176468
crossref_primary_10_1016_j_ijleo_2022_169897
crossref_primary_10_1109_TIM_2025_3548074
crossref_primary_10_1038_s44335_024_00015_z
crossref_primary_10_1080_00207543_2022_2152126
crossref_primary_10_3390_jmse12081370
crossref_primary_10_1016_j_comtox_2021_100205
crossref_primary_10_5194_hess_27_4295_2023
crossref_primary_10_1016_j_matdes_2022_111098
crossref_primary_10_1038_s44172_022_00045_0
crossref_primary_10_1016_j_cma_2022_115836
crossref_primary_10_1109_TII_2025_3534419
crossref_primary_10_21303_2461_4262_2023_002728
crossref_primary_10_2118_212204_PA
crossref_primary_10_1007_s10994_025_06808_y
crossref_primary_10_1039_D4EE01219D
crossref_primary_10_1002_aisy_202500154
crossref_primary_10_1016_j_mtelec_2025_100155
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1007_s10928_022_09805_z
crossref_primary_10_1038_s43247_024_01760_6
crossref_primary_10_1016_j_apenergy_2024_125002
crossref_primary_10_1039_D5DD00178A
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1016_j_cma_2023_116339
crossref_primary_10_1177_02783649231191184
crossref_primary_10_1016_j_geoen_2022_211363
crossref_primary_10_1093_gji_ggaf166
crossref_primary_10_1016_j_procs_2024_02_052
crossref_primary_10_1002_pip_3645
crossref_primary_10_1016_j_ress_2023_109392
crossref_primary_10_1016_j_energy_2025_136019
crossref_primary_10_1109_ACCESS_2023_3321320
crossref_primary_10_3934_fods_2024051
crossref_primary_10_5194_se_16_477_2025
crossref_primary_10_1093_pnasnexus_pgae554
crossref_primary_10_1021_acs_jchemed_3c00648
crossref_primary_10_1038_s44387_025_00019_5
crossref_primary_10_1162_jocn_a_01822
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1016_j_jpowsour_2023_234035
crossref_primary_10_1016_j_mfglet_2022_02_001
crossref_primary_10_1038_s41524_023_01040_5
crossref_primary_10_1016_j_cnsns_2024_108184
crossref_primary_10_1371_journal_pcbi_1009499
crossref_primary_10_1073_pnas_2216656120
crossref_primary_10_1002_wcms_1560
crossref_primary_10_1146_annurev_fluid_121021_025220
crossref_primary_10_1016_j_jmatprotec_2023_117967
crossref_primary_10_1061_JBENF2_BEENG_6096
crossref_primary_10_1186_s12967_025_06669_y
crossref_primary_10_1038_s41598_022_21739_7
crossref_primary_10_1137_23M1554308
crossref_primary_10_2118_203952_PA
crossref_primary_10_1039_D4DD00344F
crossref_primary_10_1038_s41467_024_48115_5
crossref_primary_10_1007_s13369_023_08096_x
crossref_primary_10_1016_j_envsoft_2023_105750
crossref_primary_10_1016_j_envres_2024_120683
crossref_primary_10_1016_j_mtcomm_2025_113525
Cites_doi 10.1038/nature14956
10.1137/16M1096840
10.1029/2020MS002386
10.1137/1.9780898717921
10.1098/rsta.1994.0105
10.1016/B978-0-12-409548-9.11262-X
10.1142/9789814503488_0018
10.1002/9780470685853
10.1038/s41558-021-00986-y
10.1007/978-94-009-1740-8
10.1098/rsta.2016.0153
10.1016/j.jcp.2015.04.047
10.1007/b138659
ContentType Journal Article
Copyright Copyright Nature Publishing Group Mar 2021
Copyright_xml – notice: Copyright Nature Publishing Group Mar 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s43588-021-00040-z
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Physics
EISSN 2662-8457
EndPage 168
ExternalDocumentID 38183195
10_1038_s43588_021_00040_z
Genre Journal Article
Commentary
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  grantid: ECCO
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0021239
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0019303
– fundername: National Science Foundation (NSF)
  grantid: 1603903
GroupedDBID 0R~
AARCD
AAYXX
ABJNI
ACBWK
AFANA
AFFHD
AFKRA
AFSHS
AFWHJ
AGHDO
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
RNT
SNYQT
SOJ
AAYZH
NFIDA
NPM
ODYON
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c397t-6fdffde914954c0241013f0053dd4c2782f49d0f53a978c17df93712d11ffa683
IEDL.DBID P5Z
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888552900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-8457
IngestDate Thu Oct 02 10:06:38 EDT 2025
Sat Aug 23 12:54:53 EDT 2025
Thu Apr 03 07:08:07 EDT 2025
Sat Nov 29 06:45:19 EST 2025
Tue Nov 18 22:18:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-6fdffde914954c0241013f0053dd4c2782f49d0f53a978c17df93712d11ffa683
Notes SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2156-9338
0000-0003-3925-6161
PMID 38183195
PQID 3225996741
PQPubID 7343593
PageCount 3
ParticipantIDs proquest_miscellaneous_2928997008
proquest_journals_3225996741
pubmed_primary_38183195
crossref_primary_10_1038_s43588_021_00040_z
crossref_citationtrail_10_1038_s43588_021_00040_z
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Nature Computational Science
PublicationTitleAlternate Nat Comput Sci
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
References AG Baydin (40_CR12) 2018; 18
P Bauer (40_CR13) 2021; 11
TN Palmer (40_CR14) 1994; 348
T Oden (40_CR6) 2010; 43
40_CR7
40_CR9
40_CR2
40_CR3
40_CR4
U Rüde (40_CR15) 2018; 60
T Isaac (40_CR5) 2015; 296
PV Coveney (40_CR1) 2016; 374
40_CR11
40_CR10
P Bauer (40_CR8) 2015; 525
References_xml – volume: 525
  start-page: 47
  year: 2015
  ident: 40_CR8
  publication-title: Nature
  doi: 10.1038/nature14956
– volume: 60
  start-page: 707
  year: 2018
  ident: 40_CR15
  publication-title: SIAM Rev.
  doi: 10.1137/16M1096840
– ident: 40_CR7
  doi: 10.1029/2020MS002386
– ident: 40_CR10
  doi: 10.1137/1.9780898717921
– volume: 18
  start-page: 1
  year: 2018
  ident: 40_CR12
  publication-title: J. Mach. Learn. Res.
– volume: 348
  start-page: 459
  year: 1994
  ident: 40_CR14
  publication-title: Philos. Trans. R. Soc. London A
  doi: 10.1098/rsta.1994.0105
– volume: 43
  start-page: 1
  year: 2010
  ident: 40_CR6
  publication-title: SIAM News
– ident: 40_CR9
  doi: 10.1016/B978-0-12-409548-9.11262-X
– ident: 40_CR2
  doi: 10.1142/9789814503488_0018
– ident: 40_CR4
  doi: 10.1002/9780470685853
– volume: 11
  start-page: 80
  year: 2021
  ident: 40_CR13
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-021-00986-y
– ident: 40_CR3
  doi: 10.1007/978-94-009-1740-8
– volume: 374
  start-page: 20160153
  year: 2016
  ident: 40_CR1
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2016.0153
– volume: 296
  start-page: 348
  year: 2015
  ident: 40_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.047
– ident: 40_CR11
  doi: 10.1007/b138659
SSID ssj0002513063
Score 2.4724472
Snippet To best learn from data about large-scale complex systems, physics-based models representing the laws of nature must be integrated into the learning process....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 166
SubjectTerms Artificial intelligence
Big Data
Complex systems
Engineering
Geometry
Gravitational waves
Inverse problems
Machine learning
Partial differential equations
Physics
Power
Science
Simulation
Sparsity
Title The imperative of physics-based modeling and inverse theory in computational science
URI https://www.ncbi.nlm.nih.gov/pubmed/38183195
https://www.proquest.com/docview/3225996741
https://www.proquest.com/docview/2928997008
Volume 1
WOSCitedRecordID wos000888552900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2662-8457
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002513063
  issn: 2662-8457
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2662-8457
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002513063
  issn: 2662-8457
  databaseCode: K7-
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2662-8457
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002513063
  issn: 2662-8457
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB-MqaAPfsSqsWnYQh8UWbzvu30qVSIFIYSSQujLctkPCJSLelHQv96ZvU1sH8xLH5e73TuYmZ3fzM7OD-DrNBDlNDAJT0treSJsygVaEddxMo3CUkeBto5sIh8Oi8lEjHzCrfZllcs90W3Ueq4oR35JiofYHB3gt7t7TqxRdLrqKTRa0KYuCUTdMEp_r3Is6LsREcf-rkwQF5c1ogNUDapLCFwx3cu__ugdkOmczc3e__7mPux6mMm-N3pxABum6sDOX80HO7Dlij9V3YEDb-A1O_NdqM8PYYwKxGYIqpvW4GxuWZMFqTl5Ps0chw6uxMpKs1lF5R2GuXuRzzhkytFF-FQj8472I_y6GYyvf3BPwcAVApUFz6y2VhtBcVSi0J-jBceWLFfrREUIL2widGDTuMRwVIW5ttRgL9JhaG2ZFfERbFbzypwAS0xWxsIEGFESRtPC5JnOotymQaSLxHQhXApCKt-fnGgy_kh3Th4XshGeROFJJzz50oWL1Zy7pjvH2rd7S5lJb6m1fBNYF76sHqON0cFJWZn5Yy0jQWFpjnCpC8eNXqw-R4gHt7H0dP3in2A7clpH1Ws92Fw8PJrP8EE9LWb1Qx9a-aToQ_tqMBz9xNFtzvtOlV8BK-r3wQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAio9AF0K3VLASCCBkNXEdh4-IISAqtWWFYdF6s3N-iGthLKl2VK1P4rfyIyTLHCgtx44Rkkcxf5m5pvxeAbgxTTR1TTximdVCFzpkHGNUsSdVFORVk4kLsRmE8V4XB4d6S8r8LM_C0Nplb1OjIrazS3FyHcJeMjN0QC-O_nOqWsU7a72LTRaWIz8xTm6bM3bg4-4vi-F2Ps0-bDPu64C3KLtXfA8uBCc1-QaKIsmCkEpA4HROWUFWsygtEtCJiv0sGxauEA144RL0xCqvJQ47g24qWRZkFyNCr6M6SBXQAYuu7M5iSx3G2QjCEXKg0hi8t7l3_bvH6Q2Gre9e__btNyHux2NZu9b3G_Aiq8HsP5HccUB3I7JrbYZwEanwBr2qquy_foBTFBA2Aydhrb0OZsH1kZ5Gk6W3bHYIwhHYlXt2Kym9BXP4rnPC7xkNrbD6EKprCMSm_D1Wv76IazW89pvAVM-r6T2CXrMxEGd9kXuclGELBGuVH4Iab_wxnb116kNyDcT8wBkaVqwGASLiWAxl0N4s3znpK0-cuXTOz1GTKeJGvMbIEN4vryNOoQ2hqraz88aIzS53QXSwSE8anG4_BwxOlTT2fbVgz-Dtf3J50NzeDAePYY7IiKeMvV2YHVxeuafwC37YzFrTp9GkWFwfN1g_AU0LE_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+imperative+of+physics-based+modeling+and+inverse+theory+in+computational+science&rft.jtitle=Nature+Computational+Science&rft.au=Willcox%2C+Karen+E&rft.au=Ghattas%2C+Omar&rft.au=Heimbach%2C+Patrick&rft.date=2021-03-01&rft.issn=2662-8457&rft.eissn=2662-8457&rft.volume=1&rft.issue=3&rft.spage=166&rft_id=info:doi/10.1038%2Fs43588-021-00040-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-8457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-8457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-8457&client=summon