Quantifying Uncertainties in OC-SMART Ocean Color Retrievals: A Bayesian Inversion Algorithm
The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (Rrs estimates), aerosol opti...
Gespeichert in:
| Veröffentlicht in: | Algorithms Jg. 16; H. 6; S. 301 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2023
|
| Schlagworte: | |
| ISSN: | 1999-4893, 1999-4893 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (Rrs estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used to relate measured top of atmosphere radiances and a priori data to estimate posterior probability density functions and associated uncertainties. A framework of the methodology and implementation strategy is presented and uncertainty estimates for Rrs retrievals are provided to demonstrate the approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data. |
|---|---|
| AbstractList | The Ocean Color-Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (R[sub.rs] estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used to relate measured top of atmosphere radiances and a priori data to estimate posterior probability density functions and associated uncertainties. A framework of the methodology and implementation strategy is presented and uncertainty estimates for R[sub.rs] retrievals are provided to demonstrate the approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data. The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in conjunction with comprehensive radiative transfer computations to provide accurate remote sensing reflectances (Rrs estimates), aerosol optical depths, and inherent optical properties. This paper expands the capability of OC-SMART by quantifying uncertainties in ocean color retrievals. Bayesian inversion is used to relate measured top of atmosphere radiances and a priori data to estimate posterior probability density functions and associated uncertainties. A framework of the methodology and implementation strategy is presented and uncertainty estimates for Rrs retrievals are provided to demonstrate the approach by applying it to MODIS, OLCI Sentinel-3, and VIIRS sensor data. |
| Audience | Academic |
| Author | Li, Wei Stamnes, Knut Fan, Yongzhen Pachniak, Elliot |
| Author_xml | – sequence: 1 givenname: Elliot orcidid: 0009-0009-5381-1302 surname: Pachniak fullname: Pachniak, Elliot – sequence: 2 givenname: Yongzhen surname: Fan fullname: Fan, Yongzhen – sequence: 3 givenname: Wei surname: Li fullname: Li, Wei – sequence: 4 givenname: Knut orcidid: 0000-0002-8880-6070 surname: Stamnes fullname: Stamnes, Knut |
| BookMark | eNptkV9rHCEUxaWk0CTNQ7-B0Kc-TKLjzDj2bbq06ULK0vx5KwxX57p1mdVU3cB--7jdEkopCl6Ov3O8eM_IiQ8eCXnH2aUQil0B71jHBOOvyClXSlVNr8TJX_UbcpbShrGuVR0_JT--78BnZ_fOr-mDNxgzuCJgos7T1aK6-zbc3tOVQfB0EeYQ6S3m6PAJ5vSRDvQT7DG5crn0TxiTC54O8zpEl39u35LXtmB48ec8Jw9fPt8vvlY3q-vlYripjFAyVy3KdtLG2F6AmJRWh91OtTJKy7rpOzZxoVFAL3VrGrTMSluzWkDDOkAtzsnymDsF2IyP0W0h7scAbvwthLgeIWZnZhxV22vNRcnumwZkrTrFOWMTUxY1gi1Z749ZjzH82mHK4ybsoi_tj3V_wEWJKNTlkVpDCXXehhzBlDXh1pkyEuuKPsi2UVKwVhbDh6PBxJBSRPvSJmfjYXLjy-QKe_UPa1yGXL62POLm_zieARzdmsA |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3492322 |
| Cites_doi | 10.1080/00207179008934126 10.1016/j.rse.2019.05.017 10.1117/12.929851 10.1016/j.rse.2014.12.001 10.1080/014311699212434 10.1364/AO.46.005649 10.1002/9781119325888 10.1016/j.cageo.2018.10.006 10.1175/2009JTECHO654.1 10.1029/96JC03243 10.1364/OE.18.007521 10.1364/OE.19.009783 10.1002/9783527696604 10.1080/01431160600821127 10.1007/s11004-022-09994-w 10.1364/OE.460735 10.1016/j.rse.2013.02.012 10.1016/j.rse.2017.07.016 10.1364/AO.49.005545 10.5194/acp-15-5947-2015 10.1364/AO.461861 10.1364/AO.41.006289 10.1109/MCI.2022.3155327 10.1016/j.rse.2018.07.003 10.3389/frsen.2022.857530 10.1364/AO.33.000443 10.3389/feart.2019.00116 10.1016/j.rse.2021.112848 10.1016/j.rse.2020.112236 10.1142/3171 10.3389/fmars.2017.00140 10.1016/j.rse.2015.01.025 10.1021/acs.est.5b03518 10.1029/98JC02160 10.1364/AO.42.000939 10.1109/TGRS.2003.817682 10.3390/app8122682 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/a16060301 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_958bb1329c844a729691100d09febeaf A754973057 10_3390_a16060301 |
| GeographicLocations | Canada |
| GeographicLocations_xml | – name: Canada |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c397t-5e75dbccf83a3d9b99b995d29c9b724860d13be3a87b5c4ef0f7f2023a406aeb3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013763200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:52:39 EDT 2025 Fri Jul 25 10:34:26 EDT 2025 Tue Nov 04 17:43:43 EST 2025 Sat Nov 29 07:20:06 EST 2025 Tue Nov 18 21:41:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-5e75dbccf83a3d9b99b995d29c9b724860d13be3a87b5c4ef0f7f2023a406aeb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-5381-1302 0000-0002-8880-6070 |
| OpenAccessLink | https://www.proquest.com/docview/2829693958?pq-origsite=%requestingapplication% |
| PQID | 2829693958 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_958bb1329c844a729691100d09febeaf proquest_journals_2829693958 gale_infotracacademiconefile_A754973057 crossref_primary_10_3390_a16060301 crossref_citationtrail_10_3390_a16060301 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fichot (ref_6) 2016; 50 Fan (ref_13) 2017; 199 Moore (ref_15) 1999; 20 Gilerson (ref_44) 2022; 3 Morel (ref_35) 2002; 41 Fan (ref_14) 2021; 253 Doerffer (ref_21) 2007; 28 ref_34 ref_11 Koepke (ref_32) 2015; 15 ref_10 Ahmad (ref_31) 2010; 49 Steinmetz (ref_20) 2011; 19 ref_30 Ibramhim (ref_18) 2019; 7 Feng (ref_24) 2022; 54 ref_38 Gordon (ref_4) 1994; 33 Thompson (ref_19) 2018; 216 Zibordi (ref_40) 2009; 26 Hu (ref_47) 2013; 133 Zhang (ref_29) 2022; 30 Kudela (ref_7) 2015; 167 Schroeder (ref_27) 2022; 270 Zibordi (ref_37) 2003; 41 ref_25 ref_46 Yang (ref_12) 2019; 122 Frouin (ref_23) 2015; 159 Ibrahim (ref_28) 2022; 61 Garver (ref_33) 1997; 102 Chen (ref_36) 1990; 51 ref_43 Stamnes (ref_17) 2007; 42 ref_42 ref_41 ref_1 Thompson (ref_22) 2019; 231 Hieronymi (ref_26) 2017; 4 ref_3 ref_2 Jospin (ref_45) 2022; 17 Werdell (ref_39) 2007; 46 ref_9 ref_8 Maritorena (ref_5) 1998; 103 Bailey (ref_16) 2010; 18 |
| References_xml | – ident: ref_9 – volume: 51 start-page: 1191 year: 1990 ident: ref_36 article-title: Non-linear system identification using neural networks publication-title: Int. J. Control doi: 10.1080/00207179008934126 – ident: ref_3 – volume: 231 start-page: 111198 year: 2019 ident: ref_22 article-title: A unified approach to estimate land and water reflectances with uncertainties for coastal imaging spectroscopy publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2019.05.017 – ident: ref_34 – ident: ref_2 doi: 10.1117/12.929851 – volume: 159 start-page: 332 year: 2015 ident: ref_23 article-title: Bayesian methodology for inverting satellite ocean-color data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.001 – volume: 20 start-page: 1713 year: 1999 ident: ref_15 article-title: The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS publication-title: Int. J. Remote. Sens. doi: 10.1080/014311699212434 – volume: 46 start-page: 5649 year: 2007 ident: ref_39 article-title: On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model publication-title: Appl. Opt. doi: 10.1364/AO.46.005649 – ident: ref_11 doi: 10.1002/9781119325888 – volume: 122 start-page: 54 year: 2019 ident: ref_12 article-title: Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion publication-title: Comp. Geosci. doi: 10.1016/j.cageo.2018.10.006 – volume: 26 start-page: 1634 year: 2009 ident: ref_40 article-title: Aeronet-OC: A network for the validation of ocean color primary products publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHO654.1 – volume: 102 start-page: 18607 year: 1997 ident: ref_33 article-title: Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the sargasso sea publication-title: J. Geophys. Res. Ocean. doi: 10.1029/96JC03243 – ident: ref_1 – volume: 18 start-page: 7521 year: 2010 ident: ref_16 article-title: Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing publication-title: Opt. Express doi: 10.1364/OE.18.007521 – volume: 19 start-page: 9783 year: 2011 ident: ref_20 article-title: Atmospheric correction in presence of sun glint: Application to MERIS publication-title: Opt. Express doi: 10.1364/OE.19.009783 – ident: ref_42 doi: 10.1002/9783527696604 – volume: 28 start-page: 517 year: 2007 ident: ref_21 article-title: The MERIS Case 2 water algorithm publication-title: Int. J. Remote. Sens. doi: 10.1080/01431160600821127 – volume: 54 start-page: 831 year: 2022 ident: ref_24 article-title: Application of Bayesian generative adversarial networks to geological facies modeling publication-title: Math. Geosci. doi: 10.1007/s11004-022-09994-w – volume: 30 start-page: 31415 year: 2022 ident: ref_29 article-title: Estimating pixel-level uncertainty in ocean color retrievals from MODIS publication-title: Opt. Express doi: 10.1364/OE.460735 – volume: 133 start-page: 168 year: 2013 ident: ref_47 article-title: Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2013.02.012 – volume: 199 start-page: 218 year: 2017 ident: ref_13 article-title: Atmospheric correction over coastal waters using multilayer neural networks publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2017.07.016 – ident: ref_8 – volume: 49 start-page: 5545 year: 2010 ident: ref_31 article-title: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the seawifs and modis sensors over coastal regions and open oceans publication-title: Appl. Opt. doi: 10.1364/AO.49.005545 – volume: 15 start-page: 5947 year: 2015 ident: ref_32 article-title: Technical note: Optical properties of desert aerosol with non-spherical mineral particles: Data incorporated to opac publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-5947-2015 – ident: ref_25 – volume: 61 start-page: 6453 year: 2022 ident: ref_28 article-title: Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification publication-title: Appl. Opt. doi: 10.1364/AO.461861 – volume: 41 start-page: 6289 year: 2002 ident: ref_35 article-title: Bidirectional reflectance of oceanic waters: Accounting for raman emission and varying particle scattering phase function publication-title: Appl. Opt. doi: 10.1364/AO.41.006289 – volume: 17 start-page: 29 year: 2022 ident: ref_45 article-title: Hands-on Bayesian Neural Networks—A Tutorial for Deep Learning Users publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2022.3155327 – volume: 216 start-page: 355 year: 2018 ident: ref_19 article-title: Optimal estimation for imaging spectrometer atmospheric correction publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2018.07.003 – ident: ref_46 – volume: 3 start-page: 25 year: 2022 ident: ref_44 article-title: Determining the Primary Sources of Uncertainty in Retrieval of Marine Remote Sensing Reflectance From Satellite Ocean Color Sensors publication-title: Front. Remote. Sens. doi: 10.3389/frsen.2022.857530 – ident: ref_10 – volume: 33 start-page: 443 year: 1994 ident: ref_4 article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm publication-title: Appl. Opt. doi: 10.1364/AO.33.000443 – volume: 7 start-page: 116 year: 2019 ident: ref_18 article-title: Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00116 – volume: 270 start-page: 112848 year: 2022 ident: ref_27 article-title: An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2021.112848 – volume: 253 start-page: 112236 year: 2021 ident: ref_14 article-title: OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2020.112236 – ident: ref_41 doi: 10.1142/3171 – volume: 4 start-page: 140 year: 2017 ident: ref_26 article-title: The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2017.00140 – ident: ref_38 – volume: 167 start-page: 196 year: 2015 ident: ref_7 article-title: Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2015.01.025 – ident: ref_43 – volume: 50 start-page: 573 year: 2016 ident: ref_6 article-title: High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03518 – volume: 103 start-page: 24937 year: 1998 ident: ref_5 article-title: Ocean colour chlorophyll algorithms for SeaWIFS publication-title: J. Geophys. Res. doi: 10.1029/98JC02160 – volume: 42 start-page: 939 year: 2007 ident: ref_17 article-title: Accurate and selfconsistent ocean color algorithm: Simultaneous retrieval of aerosol optical properties and chlorophyll concentrations publication-title: Appl. Opt. doi: 10.1364/AO.42.000939 – volume: 41 start-page: 2861 year: 2003 ident: ref_37 article-title: Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.817682 – ident: ref_30 doi: 10.3390/app8122682 |
| SSID | ssj0065961 |
| Score | 2.2845535 |
| Snippet | The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in... The Ocean Color-Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) is a robust data processing platform utilizing scientific machine learning (SciML) in... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 301 |
| SubjectTerms | Aerosols Algorithms Bayesian analysis Bayesian inversion Chlorophyll Coasts Conditional probability Data processing Datasets Estimates Machine learning Neural networks Ocean color Optical properties Probability density functions Radiative transfer Remote sensing Sensors Simulation Uncertainty |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4iPvjiXZxOCSLoS9mlTdP4tg2HL27eBnsQQq46mJ10m-C_95y2GwqKL0KfSqDpd5KT77TJ9xFy5phxQNp80Ix4PYistoFgXAUc5cBiBxWD17nZBO_1kuFQ3H6x-sI9YYU8cAFcTbBEa3RDN0kUKaCCsUCVM1sXHp6vPGZfYD2LYqrIwTETcaPQEQqhqK-pBvB0JP_fVp9cpP-3VJyvL90tslESQ9oqOrRNVly6QzYXpgu0nIO75OlurnCDDx5PogO4lf_SR1lUOkppvxM83ABHpX3jVEo7kNoyep-7ZsGQml7SFm2rD4cnJylKbOQfy2hr_DzJRrOX1z0y6F49dq6D0iIhMEAkZgFznFltjE9CFVqhBV7MAlpC8yYaTNlGqF2oEq6ZiZyve-7RMV3BQq6gkN4nq-kkdQeE2ih2iRdOeADaCy-aOra27kSjaROVRBVysYBOmlI_HG0sxhLqCERZLlGukNNl07dCNOOnRm3Ef9kAda7zGxB9WUZf_hX9CjnH6EmcjdAZo8pDBfBKqGslWxyGHCQxxiukugiwLKfpVOJv5FiE8JTD_-jNEVlHbIudZFWyOsvm7pismffZaJqd5CP0E94L6hg priority: 102 providerName: Directory of Open Access Journals |
| Title | Quantifying Uncertainties in OC-SMART Ocean Color Retrievals: A Bayesian Inversion Algorithm |
| URI | https://www.proquest.com/docview/2829693958 https://doaj.org/article/958bb1329c844a729691100d09febeaf |
| Volume | 16 |
| WOSCitedRecordID | wos001013763200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-09cEX6yc9rUcQQV9Cbz-y2fgid8cVRXo9WwsVhCWftVD36t1V8MW_3Zlc9kRQX4RlHzZ5yGYmk5nJ5PcDeO6F9ei0BZ6XcsBLZxxXQmouCQ6s8hgxBBPJJuR0Wp-dqVlKuC1TWWVnE6OhdnNLOfJ9OvGrVKFE_frqKyfWKDpdTRQaN2E7y_OM9Pyd5J0lroSqsjWaUIGh_b7O0FunEOC3PShC9f_NIMdd5mDnf8d3F-4k_5IN1wpxD2749j7sdNwNLC3lB_Dp_bWmOiG65cRO8VOsDCB0VXbRsqMxPzlEV5cdWa9bNkYLuWDHkXwLNXP5ig3ZSH_3dAGTEVJHzLmx4eU5jmj1-ctDOD2YfBi_4YlpgVv0R1ZceCmcsTbUhS6cMooe4XJllZE58VS5rDC-0LU0wpY-DIIMRLyu0R_QGI8_gq123vpdYK6sfB2UV6Euy6CCyk3l3MCrLHe1rssevOzmvrEJhpzYMC4bDEdITM1GTD14tul6tcbe-FOnEQlw04HgsuOH-eK8SauvQakYg3G3sjgoLUlSBJXnBiqgEuvQgxck_oYWNQ7G6nQ3AX-J4LGaoUTNRVsoZA_2OvE3abUvm1-yf_zv5idwm2ZtXWq2B1urxbV_Crfst9XFctGH7dFkOjvux7xAP6pyn2pRT-j9Y4Lts7eHs48_AQZB_sc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD7UKuiL9YprqwZR9CV07pkIRbarpWXbrZcW-lCIudZCnW13t5b-KX-j58xlRVDf-iDMUyYMk-TLOTnJyfcBvPC59bhoCzzJRMQzZxyXudBcEB1Y4TFiCKYWmxCjUXlwID8swI_uLgylVXY2sTbUbmxpj3yVTvwKmcq8fHt6xkk1ik5XOwmNBhZDf3mBIdt0besdju_LJNl4vzfY5K2qALfoe2c89yJ3xtpQpjp10kh6cpdIK41ISJPJxanxqS6FyW3mQxREIJFxjb5PY-yJ370G17O0FMTVPxS8s_xFLou4YS9KUxmt6hijAwo5fvN5tTTA3xxA7dU2lv63_rgDt9v1M-s3gL8LC766B0udNgVrTdV9OPx4rikPim5xsX0sqjMfiD2WHVdsd8A_7-BSnu1arys2QA8wYZ9qcTGcedM3rM_W9aWnC6aMmEjqPUXWPznCHph9_fYA9q-kjQ9hsRpX_hEwlxW-DNLLUGZZkEEmpnAu8jJOXKnLrAevu7FWtqVZJ7WPE4XhFsFCzWHRg-fzqqcNt8ifKq0TYOYViA68LhhPjlRrXRSiwJg4xfbgT2lByCAqQBfJgJNUhx68IrgpMlr4M1a3dy-wSUT_pfoCZyba-lz0YKWDm2qt2VT9wtrjf79-Bjc393a21fbWaLgMt6gHm7S6FVicTc79E7hhv8-Op5On9cRh8OWqkfkTXKhW_w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEC5iFMnF-CSrURtR9DLsvHp6WhDZbFwMq5v4COQQaPsZA3E27m6U_DV_nVXzWBHUWw7CnGaaYbrnq_q6uqvrA3jsufU4aQtRmos4yp1xkeRCR4LKgRUeI4ZgarEJMZmUBwdybwV-dGdhKK2y84m1o3ZTS2vkfdrxK2QmedkPbVrE3vbo5enXiBSkaKe1k9NoIDL2598xfJu_2NnGf_0kTUevPg5fR63CQGSRhxcR94I7Y20oM505aSRd3KXSSiNS0mdySWZ8pkthuM19iIMIJDiukQc1xqH43ktwGVmYk42NRdSxQMFlkTSVjLJMxn2dYKRA4cdv_FfLBPyNDGqGG63_z2NzHa6182o2aAzhBqz46iasd5oVrHVht-Dw3Zmm_Cg63cX28VadEUFVZdlxxXaH0Ye3OMVnu9brig2RGWbsfS06hhY5f84GbEufezp4yqhCSb3WyAYnRzgCi89fbsP-hfTxDqxW08pvAHN54csgvQxlngcZZGoK52Ivk9SVusx78Kz778q25ddJBeREYRhGEFFLiPTg0bLpaVNz5E-Ntgg8ywZUJry-MZ0dqdbrKESEMUmG_cGP0oJQQiUCXSwDGq8OPXhK0FPkzPBjrG7PZGCXqCyYGgi0WOQALnqw2UFPtV5urn7h7u6_Hz-EqwhI9WZnMr4HazSATbbdJqwuZmf-Plyx3xbH89mD2oYYfLpoYP4En1xfuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+Uncertainties+in+OC-SMART+Ocean+Color+Retrievals%3A+A+Bayesian+Inversion+Algorithm&rft.jtitle=Algorithms&rft.au=Pachniak%2C+Elliot&rft.au=Fan%2C+Yongzhen&rft.au=Li%2C+Wei&rft.au=Stamnes%2C+Knut&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=6&rft.spage=301&rft_id=info:doi/10.3390%2Fa16060301&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |