Sampling from Non-smooth Distributions Through Langevin Diffusion

In this paper, we propose proximal splitting-type algorithms for sampling from distributions whose densities are not necessarily smooth nor log-concave. Our approach brings together tools from, on the one hand, variational analysis and non-smooth optimization, and on the other hand, stochastic diffu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability Jg. 23; H. 4; S. 1173 - 1201
Hauptverfasser: Luu, Tung Duy, Fadili, Jalal, Chesneau, Christophe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2021
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1387-5841, 1573-7713
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose proximal splitting-type algorithms for sampling from distributions whose densities are not necessarily smooth nor log-concave. Our approach brings together tools from, on the one hand, variational analysis and non-smooth optimization, and on the other hand, stochastic diffusion equations, and in particular the Langevin diffusion. We establish in particular consistency guarantees of our algorithms seen as discretization schemes in this context. These algorithms are then applied to compute the exponentially weighted aggregates for regression problems involving non-smooth penalties that are commonly used to promote some notion of simplicity/complexity. Some popular penalties are detailed and implemented on some numerical experiments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-020-09809-7