Optimization of a domestic microgrid equipped with solar panel and battery: Model Predictive Control and Stochastic Dual Dynamic Programming approaches
In this study, a microgrid with storage (battery, hot water tank) and solar panel is considered. We benchmark two algorithms, MPC and SDDP, that yield online policies to manage the microgrid, and compare them with a rule based policy. Model Predictive Control (MPC) is a well-known algorithm which mo...
Uložené v:
| Vydané v: | Energy systems (Berlin. Periodical) Ročník 15; číslo 1; s. 115 - 139 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Nature B.V Springer |
| Predmet: | |
| ISSN: | 1868-3967, 1868-3975 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this study, a microgrid with storage (battery, hot water tank) and solar panel is considered. We benchmark two algorithms, MPC and SDDP, that yield online policies to manage the microgrid, and compare them with a rule based policy. Model Predictive Control (MPC) is a well-known algorithm which models the future uncertainties with a deterministic forecast. By contrast, Stochastic Dual Dynamic Programming (SDDP) models the future uncertainties as stagewise independent random variables with known probability distributions. We present a scheme, based on out-of-sample validation, to fairly compare the two online policies yielded by MPC and SDDP. Our numerical studies put to light that MPC and SDDP achieve significant gains compared to the rule based policy, and that SDDP overperforms MPC not only on average but on most of the out-of-sample assessment scenarios. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1868-3967 1868-3975 |
| DOI: | 10.1007/s12667-022-00522-7 |