Differential calculus and integration of generalized functions over membranes
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion o...
Saved in:
| Published in: | Monatshefte für Mathematik Vol. 166; no. 1; pp. 1 - 18 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Vienna
Springer Vienna
01.04.2012
|
| Subjects: | |
| ISSN: | 0026-9255, 1436-5081 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29,
2005
). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144:13–29,
2005
), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green’s theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well. |
|---|---|
| ISSN: | 0026-9255 1436-5081 |
| DOI: | 10.1007/s00605-010-0275-z |