Differential calculus and integration of generalized functions over membranes

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monatshefte für Mathematik Ročník 166; číslo 1; s. 1 - 18
Hlavní autoři: Aragona, Jorge, Fernandez, Roseli, Juriaans, Stanley O., Oberguggenberger, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.04.2012
Témata:
ISSN:0026-9255, 1436-5081
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green’s theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-010-0275-z