Differential calculus and integration of generalized functions over membranes

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik Jg. 166; H. 1; S. 1 - 18
Hauptverfasser: Aragona, Jorge, Fernandez, Roseli, Juriaans, Stanley O., Oberguggenberger, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vienna Springer Vienna 01.04.2012
Schlagworte:
ISSN:0026-9255, 1436-5081
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144:13–29, 2005 ), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green’s theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-010-0275-z