VeloxChem: A Python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments

An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wiley interdisciplinary reviews. Computational molecular science Ročník 10; číslo 5; s. e1457 - n/a
Hlavní autoři: Rinkevicius, Zilvinas, Li, Xin, Vahtras, Olav, Ahmadzadeh, Karan, Brand, Manuel, Ringholm, Magnus, List, Nanna Holmgaard, Scheurer, Maximilian, Scott, Mikael, Dreuw, Andreas, Norman, Patrick
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA Wiley Periodicals, Inc 01.09.2020
Wiley Subscription Services, Inc
Wiley
Témata:
ISSN:1759-0876, 1759-0884, 1759-0884
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy With a high degree of code vectorization and parallelization, the VeloxChem program provides a powerful tool to calculate absorptive and dispersive parts of real and complex linear response functions at the level of Kohn–Sham density functional theory, also allowing for a treatment of ultra‐short light pulses.
AbstractList An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object-oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time-efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second-row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high-performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X-ray electronic absorption and circular dichroism spectra, but also time-resolved linear response signals as due to ultra-short weak laser pulses.
An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy With a high degree of code vectorization and parallelization, the VeloxChem program provides a powerful tool to calculate absorptive and dispersive parts of real and complex linear response functions at the level of Kohn–Sham density functional theory, also allowing for a treatment of ultra‐short light pulses.
An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org.This article is categorized under:Software > Quantum ChemistryElectronic Structure Theory > Density Functional TheoryTheoretical and Physical Chemistry > Spectroscopy
An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object‐oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time‐efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second‐row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high‐performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X‐ray electronic absorption and circular dichroism spectra, but also time‐resolved linear response signals as due to ultra‐short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org . This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy
An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of Hartree–Fock and Kohn–Sham density functional theories. With an object-oriented program structure written in a Python/C++ layered fashion, VeloxChem enables time-efficient prototyping of novel scientific approaches without sacrificing computational efficiency, so that molecular systems involving up to and beyond 500 second-row atoms (or some 10,000 contracted and in part diffuse Gaussian basis functions) can be routinely addressed. In addition, VeloxChem is equipped with a polarizable embedding scheme for the treatment of the classical electrostatic interactions with an environment that in turn is modeled by atomic site charges and polarizabilities. The underlying hybrid message passing interface (MPI)/open multiprocessing (OpenMP) parallelization scheme makes VeloxChem suitable for execution in high-performance computing cluster environments, showing even slightly beyond linear scaling for the Fock matrix construction with use of up to 16,384 central processing unit (CPU) cores. An efficient—with respect to convergence rate and overall computational cost—multifrequency/gradient complex linear response equation solver enables calculations not only of conventional spectra, such as visible/ultraviolet/X-ray electronic absorption and circular dichroism spectra, but also time-resolved linear response signals as due to ultra-short weak laser pulses. VeloxChem distributed under the GNU Lesser General Public License version 2.1 (LGPLv2.1) license and made available for download from the homepage https://veloxchem.org. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Density Functional Theory Theoretical and Physical Chemistry > Spectroscopy.
Author Ahmadzadeh, Karan
Scheurer, Maximilian
Brand, Manuel
Ringholm, Magnus
Rinkevicius, Zilvinas
Dreuw, Andreas
Norman, Patrick
Scott, Mikael
Vahtras, Olav
Li, Xin
List, Nanna Holmgaard
Author_xml – sequence: 1
  givenname: Zilvinas
  surname: Rinkevicius
  fullname: Rinkevicius, Zilvinas
  organization: Kaunas University of Technology
– sequence: 2
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: KTH Royal Institute of Technology
– sequence: 3
  givenname: Olav
  surname: Vahtras
  fullname: Vahtras, Olav
  organization: KTH Royal Institute of Technology
– sequence: 4
  givenname: Karan
  surname: Ahmadzadeh
  fullname: Ahmadzadeh, Karan
  organization: KTH Royal Institute of Technology
– sequence: 5
  givenname: Manuel
  orcidid: 0000-0003-3992-043X
  surname: Brand
  fullname: Brand, Manuel
  organization: KTH Royal Institute of Technology
– sequence: 6
  givenname: Magnus
  surname: Ringholm
  fullname: Ringholm, Magnus
  organization: KTH Royal Institute of Technology
– sequence: 7
  givenname: Nanna Holmgaard
  surname: List
  fullname: List, Nanna Holmgaard
  organization: SLAC National Accelerator Laboratory
– sequence: 8
  givenname: Maximilian
  surname: Scheurer
  fullname: Scheurer, Maximilian
  organization: Ruprecht‐Karls University
– sequence: 9
  givenname: Mikael
  surname: Scott
  fullname: Scott, Mikael
  organization: Ruprecht‐Karls University
– sequence: 10
  givenname: Andreas
  surname: Dreuw
  fullname: Dreuw, Andreas
  organization: Ruprecht‐Karls University
– sequence: 11
  givenname: Patrick
  orcidid: 0000-0002-1191-4954
  surname: Norman
  fullname: Norman, Patrick
  email: panor@kth.se
  organization: KTH Royal Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1591634$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-268434$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kcFu1DAURSPUSpTSBX9gwYpF2jiJHYfdaIBSqahIQFlajvM8cUns1HY6ZNc1q34jX4Izg7pAAm9sWefdq3fvs-TAWANJ8gJnpzjL8rOtHPwpLkn1JDnCFanTjLHy4PFd0afJifc3WTxljfMCHyU_r6G3P9YdDG_QCn2aQ2fNr_uH1uk7MKgF43WY44eajAzaGtGj0IF1Mxqd3TgxIGUd8iPI4KyXdpyR18PUiwX2SBvU6U0XBUZwkRyEkYCkHcYpaLNBYO60s2YAE_zz5FCJ3sPJn_s4-fr-3Zf1h_Ty6vxivbpMZVFXVaqYLBSoUsaNQRFJC4UlI6LJWpLlbdU2ROWC0AID1DUVDalbRlhLmaKNqGlxnKR7Xb-FcWr46PQg3Myt0Pytvl5x6zb8e-h4TllZlJF_ueetD5p7qQPITlpj4s4ckxrTHfRqD8VYbifwgd_YycW4PM_LImN1mePF-vWekjEs70A9muOMLxXypUK-VBjZs7_Y6LyLNTih-_9NbHUP87-l-bf1x8-7id9e57dp
CitedBy_id crossref_primary_10_1063_5_0031851
crossref_primary_10_1002_cplu_202200262
crossref_primary_10_1016_j_cplett_2021_138746
crossref_primary_10_1021_acs_chemrev_4c00815
crossref_primary_10_1002_wcms_1528
crossref_primary_10_1021_acs_jpca_5c04528
crossref_primary_10_1063_5_0040009
crossref_primary_10_1021_acs_jpca_5c03187
crossref_primary_10_1021_acs_jctc_4c01545
crossref_primary_10_1021_acs_jctc_4c01687
crossref_primary_10_1080_08927022_2022_2126865
crossref_primary_10_1002_ejoc_202300583
crossref_primary_10_1063_5_0203401
crossref_primary_10_1002_wcms_1462
crossref_primary_10_1088_2516_1075_aca859
crossref_primary_10_1063_5_0058221
crossref_primary_10_1109_ACCESS_2022_3217225
crossref_primary_10_1063_5_0231339
crossref_primary_10_3390_sym14040715
crossref_primary_10_1021_acs_jpclett_5c02066
crossref_primary_10_1039_D3NR06460C
crossref_primary_10_1088_2516_1075_ad4b80
crossref_primary_10_1002_wcms_1610
crossref_primary_10_1002_chem_202301815
crossref_primary_10_3390_pr11102897
crossref_primary_10_1002_wcms_1596
crossref_primary_10_1021_acs_jchemed_2c01103
Cites_doi 10.1002/9781118794821
10.1002/qua.560450106
10.1021/ct400946k
10.1039/C9CC01513B
10.1021/ct500114m
10.1063/1.2716660
10.1039/C8CP04340J
10.1002/9780470116449.ch1
10.1002/wcms.1340
10.1063/1.1778131
10.1016/j.jpdc.2007.09.005
10.1063/1.469408
10.1021/jp304576g
10.1016/B978-0-12-374413-5.00369-9
10.1063/1.450106
10.1039/c1cp21951k
10.1021/acs.jctc.8b00286
10.1063/1.4985565
10.1016/0009-2614(96)00600-8
10.1039/C5CP02481A
10.1021/cr500524c
10.1063/1.4913961
10.1063/1.4922697
10.1021/jacs.7b05994
10.1021/acs.jctc.9b00758
10.1063/1.2348882
10.1063/1.4991616
10.1080/00268976.2016.1177667
10.1109/MCSE.2011.37
10.1039/b605188j
10.1021/acs.jctc.7b00171
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID 24P
AAYXX
CITATION
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
OIOZB
OTOTI
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1002/wcms.1457
DatabaseName Wiley Online Library : Open Access journals [open access]
CrossRef
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID oai_DiVA_org_kth_268434
1591634
10_1002_wcms_1457
WCMS1457
Genre reviewArticle
GrantInformation_xml – fundername: Swedish e‐Science Research Centre (SeRC)
– fundername: Villum Fonden
  funderid: VKR023371
– fundername: Vetenskapsrådet
  funderid: 2018‐4343
– fundername: Swedish National Infrastructure for Computing (SNIC)
– fundername: H2020 Marie Skłodowska‐Curie Actions
  funderid: COSINE
– fundername: Norges Forskningsråd
  funderid: 274918
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
LH4
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
AAPBV
ABHUG
ADAWD
ADDAD
AEUQT
AFVGU
AGJLS
OIOZB
OTOTI
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c3977-f8c3fef4c002ef5c63f1c85ab0d502d7db5f2a5631ee996ab59d858d68f6ba963
IEDL.DBID 24P
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
1759-0884
IngestDate Tue Nov 04 16:37:06 EST 2025
Thu May 18 22:36:17 EDT 2023
Fri Sep 12 01:51:39 EDT 2025
Sat Nov 29 02:23:38 EST 2025
Tue Nov 18 21:34:50 EST 2025
Wed Jan 22 16:34:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3977-f8c3fef4c002ef5c63f1c85ab0d502d7db5f2a5631ee996ab59d858d68f6ba963
Notes Funding information
H2020 Marie Skłodowska‐Curie Actions, Grant/Award Number: COSINE; Norges Forskningsråd, Grant/Award Number: 274918; Vetenskapsrådet, Grant/Award Number: 2018‐4343; Villum Fonden, Grant/Award Number: VKR023371; Swedish National Infrastructure for Computing (SNIC); Swedish e‐Science Research Centre (SeRC)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-76SF00515; COSINE; 274918; 2018‐4343; VKR023371
USDOE
ORCID 0000-0002-1191-4954
0000-0003-3992-043X
0000000211914954
000000033992043X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1457
PQID 2430894216
PQPubID 2034594
PageCount 14
ParticipantIDs swepub_primary_oai_DiVA_org_kth_268434
osti_scitechconnect_1591634
proquest_journals_2430894216
crossref_primary_10_1002_wcms_1457
crossref_citationtrail_10_1002_wcms_1457
wiley_primary_10_1002_wcms_1457_WCMS1457
PublicationCentury 2000
PublicationDate September/October 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September/October 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
– name: United States
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2020
Publisher Wiley Periodicals, Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Periodicals, Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2007; 126
2004; 121
1993; 45
2015; 17
2017a; 139
2011
2010
2019; 55
2015; 142
2019; 15
2006; 8
2011; 13
2017b; 146
2017; 115
2018; 8
1986; 84
2015; 115
2001
2019; 21
2017; 13
2019
2018
2008; 68
2017
1995; 102
1996; 257
2012; 116
2007; 23
2017; 147
2018; 14
2014; 10
2006; 125
Scheurer M. (e_1_2_11_15_1) 2019
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Rehn DR (e_1_2_11_16_1) 2019
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
Olsen JMH (e_1_2_11_27_1) 2011
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_37_1
e_1_2_11_19_1
References_xml – year: 2011
– volume: 45
  start-page: 31
  issue: 1
  year: 1993
  end-page: 41
  article-title: The C2‐DIIS convergence acceleration algorithm
  publication-title: Int J Quantum Chem
– volume: 13
  start-page: 20,519
  year: 2011
  end-page: 20,535
  article-title: A perspective on nonresonant and resonant electronic response theory for time‐dependent molecular properties
  publication-title: Phys Chem Chem Phys
– volume: 10
  start-page: 2449
  year: 2014
  end-page: 2455
  article-title: Efficient calculations of molecular linear response properties for spectral regions
  publication-title: J Chem Theory Comput
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  end-page: 30
  article-title: The NumPy array: A structure for efficient numerical computation
  publication-title: Comput Sci Eng
– volume: 55
  start-page: 5701
  issue: 40
  year: 2019
  end-page: 5704
  article-title: A new interpretation of the structure and solvent dependence of the far UV circular dichroism spectrum of short oligopeptides
  publication-title: Chem Commun
– volume: 147
  start-page: 144,109
  year: 2017
  article-title: Resonant‐convergent second‐order nonlinear response functions at the levels of Hartree‐Fock and Kohn‐Sham density functional theory
  publication-title: J Chem Phys
– year: 2001
– volume: 115
  start-page: 5797
  year: 2015
  end-page: 5890
  article-title: Large‐scale computations in chemistry: A bird's eye view of a vibrant field
  publication-title: Chem Rev
– volume: 8
  issue: 1
  year: 2018
  article-title: PySCF: The Python‐based simulations of chemistry framework
  publication-title: WIREs Comput Mol Sci
– volume: 23
  start-page: 1
  year: 2007
  end-page: 82
– volume: 121
  start-page: 4494
  issue: 10
  year: 2004
  end-page: 4500
  article-title: Local properties of quantum chemical systems: The LoProp approach
  publication-title: J Chem Phys
– year: 2018
– volume: 142
  start-page: 244,111
  issue: 24
  year: 2015
  article-title: Beyond the electric‐dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation
  publication-title: J Chem Phys
– volume: 257
  start-page: 213
  year: 1996
  end-page: 223
  article-title: Achieving linear scaling in exchange‐correlation density functional quadratures
  publication-title: Chem Phys Lett
– year: 2010
– volume: 115
  start-page: 39
  issue: 1–2
  year: 2017
  end-page: 47
  article-title: Assessing frequency‐dependent site polarisabilities in linear response polarisable embedding
  publication-title: Mol Phys
– volume: 15
  start-page: 6154
  issue: 11
  year: 2019
  end-page: 6163
– volume: 116
  start-page: 7372
  year: 2012
  end-page: 7385
  article-title: Theoretical and experimental studies on circular Dichroism of Carbo[ n ]helicenes
  publication-title: J Phys Chem A
– volume: 146
  start-page: 234,101
  issue: 23
  year: 2017b
  article-title: A quantum‐mechanical perspective on linear response theory within polarizable embedding
  publication-title: J Chem Phys
– volume: 125
  start-page: 124,306
  issue: 12
  year: 2006
  article-title: Electric dipole polarizabilities and C6 dipole‐dipole dispersion coefficients for sodium clusters and C60
  publication-title: J Chem Phys
– volume: 102
  start-page: 346
  year: 1995
  end-page: 354
  article-title: Efficient molecular numerical integration schemes
  publication-title: J Chem Phys
– volume: 139
  start-page: 14,947
  year: 2017a
  end-page: 14,953
  article-title: Origin of DNA‐induced circular dichroism in a minor‐groove binder
  publication-title: J Am Chem Soc
– volume: 84
  start-page: 3963
  year: 1986
  end-page: 3974
  article-title: Efficient recursive computation of molecular integrals over Cartesian Gaussian functions
  publication-title: J Chem Phys
– year: 2019
  article-title: Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions
  publication-title: WIREs Comput Mol Sci
– volume: 8
  start-page: 3072
  year: 2006
  end-page: 3077
  article-title: A simple algebraic derivation of the Obara–Saika scheme for general two‐electron interaction potentials
  publication-title: Phys Chem Chem Phys
– volume: 10
  start-page: 1164
  year: 2014
  end-page: 1171
  article-title: Damped response theory in combination with polarizable environments: The polarizable embedding complex polarization propagator method
  publication-title: J Chem Theory Comput
– volume: 142
  start-page: 104,103
  issue: 10
  year: 2015
  article-title: Parallel scalability of Hartree‐Fock calculations
  publication-title: J Chem Phys
– year: 2017
– volume: 126
  start-page: 134,102
  year: 2007
  article-title: Electronic circular dichroism spectra from the complex polarization propagator
  publication-title: J Chem Phys
– volume: 21
  start-page: 2251
  issue: 5
  year: 2019
  end-page: 2270
  article-title: Decomposition of molecular properties
  publication-title: Phys Chem Chem Phys
– volume: 68
  start-page: 655
  year: 2008
  end-page: 662
  article-title: MPI for Python: Performance improvements and MPI‐2 extensions
  publication-title: J Parallel Distrib Comput
– year: 2019
– volume: 13
  start-page: 3493
  year: 2017
  end-page: 3504
  article-title: An Ab initio exciton model including charge‐transfer excited states
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 3504
  issue: 7
  year: 2018
  end-page: 3511
  article-title: Psi4NumPy: An interactive quantum chemistry programming environment for reference implementations and rapid development
  publication-title: J Chem Theory Comput
– volume: 17
  start-page: 21,866
  year: 2015
  end-page: 21,879
  article-title: Predicting near‐UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory
  publication-title: Phys Chem Chem Phys
– ident: e_1_2_11_4_1
  doi: 10.1002/9781118794821
– volume-title: CPPE: C++ and Python library for polarizable embedding
  year: 2019
  ident: e_1_2_11_15_1
– ident: e_1_2_11_13_1
– ident: e_1_2_11_21_1
  doi: 10.1002/qua.560450106
– ident: e_1_2_11_29_1
  doi: 10.1021/ct400946k
– ident: e_1_2_11_34_1
  doi: 10.1039/C9CC01513B
– ident: e_1_2_11_22_1
  doi: 10.1021/ct500114m
– ident: e_1_2_11_24_1
  doi: 10.1063/1.2716660
– ident: e_1_2_11_31_1
  doi: 10.1039/C8CP04340J
– ident: e_1_2_11_10_1
– ident: e_1_2_11_6_1
  doi: 10.1002/9780470116449.ch1
– ident: e_1_2_11_11_1
  doi: 10.1002/wcms.1340
– ident: e_1_2_11_30_1
  doi: 10.1063/1.1778131
– ident: e_1_2_11_8_1
  doi: 10.1016/j.jpdc.2007.09.005
– ident: e_1_2_11_19_1
  doi: 10.1063/1.469408
– ident: e_1_2_11_35_1
  doi: 10.1021/jp304576g
– ident: e_1_2_11_2_1
  doi: 10.1016/B978-0-12-374413-5.00369-9
– ident: e_1_2_11_17_1
  doi: 10.1063/1.450106
– ident: e_1_2_11_25_1
  doi: 10.1039/c1cp21951k
– ident: e_1_2_11_12_1
  doi: 10.1021/acs.jctc.8b00286
– ident: e_1_2_11_28_1
  doi: 10.1063/1.4985565
– ident: e_1_2_11_20_1
  doi: 10.1016/0009-2614(96)00600-8
– ident: e_1_2_11_33_1
  doi: 10.1039/C5CP02481A
– ident: e_1_2_11_5_1
  doi: 10.1021/cr500524c
– year: 2019
  ident: e_1_2_11_16_1
  article-title: Gator: A Python‐driven program for spectroscopy simulations using correlated wave functions
  publication-title: WIREs Comput Mol Sci
– ident: e_1_2_11_7_1
  doi: 10.1063/1.4913961
– ident: e_1_2_11_23_1
  doi: 10.1063/1.4922697
– volume-title: Chapter 3 ‐ molecular properties through polarizable embedding, pp. 107–143
  year: 2011
  ident: e_1_2_11_27_1
– ident: e_1_2_11_3_1
  doi: 10.1021/jacs.7b05994
– ident: e_1_2_11_14_1
  doi: 10.1021/acs.jctc.9b00758
– ident: e_1_2_11_26_1
  doi: 10.1063/1.2348882
– ident: e_1_2_11_37_1
  doi: 10.1063/1.4991616
– ident: e_1_2_11_32_1
  doi: 10.1080/00268976.2016.1177667
– ident: e_1_2_11_9_1
  doi: 10.1109/MCSE.2011.37
– ident: e_1_2_11_18_1
  doi: 10.1039/b605188j
– ident: e_1_2_11_36_1
  doi: 10.1021/acs.jctc.7b00171
SSID ssj0000491231
Score 2.4729633
SecondaryResourceType review_article
Snippet An open‐source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of...
An open-source program named VeloxChem has been developed for the calculation of electronic real and complex linear response functions at the levels of...
SourceID swepub
osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1457
SubjectTerms Analytical methods
Application programming interfaces (API)
Basis functions
Central processing units
Circular dichroism
Circular dichroism spectra
Cluster computing
Computation theory
Computational efficiency
Computer applications
Computer simulation
Computing costs
CPUs
Density
Density functional theory
density functional theory (DFT)
Dichroism
Diffusion
ECD
Electronic structure
Electronic structure theory
Electrostatic properties
Embedding
Functionals
High level languages
High performance computing
High-performance computing clusters
high‐performance computing (HPC)
Lasers
Mathematical analysis
MATHEMATICS AND COMPUTING
Matrix methods
Message passing
MPI
Multiprocessing
Object oriented programming
Open source software
OpenMP
Parallel processing
Physical chemistry
Program processors
Prototyping
Quantum chemistry
Response functions
response theory
Scaling
Source programs
Spectra
Spectroscopy
Theories
Theory
Ultraviolet spectra
UV/vis
Title VeloxChem: A Python‐driven density‐functional theory program for spectroscopy simulations in high‐performance computing environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1457
https://www.proquest.com/docview/2430894216
https://www.osti.gov/servlets/purl/1591634
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-268434
Volume 10
WOSCitedRecordID wos000502095100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0884
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJceCOWlspCCPUSNS8nDj2ttqw4QLUCWnqzEj_Kinaz2oTH3nruqb-RX8KM8ygrgYTELbJsy7FnPN9YM98AvFAGbVBapJ4SOffiLLZeFqvAU5EoeKiLjHPrik2kh4fi5CSbbsB-lwvT8EP0D26kGe6-JgXPi2rvmjT0uzqvUM95egM2gyBKSaTDeNo_sCD0xVvZOVwpzzyiXuuYhfxwrx-9Zo8GJerVOtZs-EPXoauzPZO7_7Xqe3CnhZxs1MjIfdgw8wdwa9xVensIl8fmrPxBDa_YiE1XRCfw8-JKL-kmZJpC3OsVNpANbJ4Omct_XLE2uosh8mUuZ5O4McvFilWz87YuWMVmc0akyDjB4jpLgSlXTgINJ_s91-4RHE1efxy_8doaDXiaCB09K1RkjY0V_p6xXCWRDZTgeeFr7oc61QW3Yc6TKDAGXau84JkWXOhE2KTIUfsfw2Bezs0TYAgm0GALk-aU72rQ9dS-r0ykAoFDczuE3e6kpGoJzKmOxplsqJdDSZsraXOH8LzvumhYO_7UaYuOWyLUIL5cRYFFqpaI7xCjxkPY7qRAtmpdyTCOfJHFYZAM4WUjGf38xNN9MDseyXJ5Kr_UnyXx6NA8u04e_r4O-Wn87gN9PP33rltwOyTH3wW7bcOgXn41z-Cm-lbPquWOU4Qd2Dx4Pzl6-wtdlhYj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7iRogX3-KaqI2I5DJkXj3TE7wsG5eImyVoEnNrZvqhi8nOsjM-9pZzTvmN_hKr5hUXFARvQ9Pd9HRXdX1dVH0F8FIZtEFxFjtKpNwJk9A6Sag8RwUi477OEs5tVWwinkzE6WlyuAav21yYmh-ic7iRZlT3NSk4OaR3rllDv6vzAhWdxzdgPUQx4j1Y33s_Oh53PhZEv3gxV2-umCcOsa-15EKuv9ONXzFJvRxVaxVu1hSiq-i1Mj-jO_-38Ltwu4GdbFDLyT1YM7P7sDFsq709gMsTc5b_oIZdNmCHS6IU-HlxpRd0GzJNYe7lEhvIDtbuQ1blQC5ZE-HFEP2yKm-T-DHz-ZIV0_OmNljBpjNGxMg4wfw6U4GpqqQEGk_2e77dQzgevTka7jtNnQY8UYSPjhUqsMaGCn_PWK6iwHpK8DRzNXd9HeuMWz_lUeAZg8-rNOOJFlzoSNgoS_EGeAS9WT4zj4EhoECjLUycUs6rweendl1lAuUJHJraPmy3RyVVQ2JOtTTOZE2_7EvaXEmb24cXXdd5zdzxp06bdN4S4QZx5ioKLlKlRIyHODXsw1YrBrJR7UL6YeCKJPS9qA-vatHo5ieu7r3pyUDmi0_yS_lZEpcOzbNdCcTf1yE_Dg8-0MeTf-_6HDb2jw7Gcvx28m4TbvnkCKiC37agVy6-mqdwU30rp8XiWaMXvwD1kRoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC7WUVwvPndx3FUbEdlL2Lw66YiXYdZBUYcBdd1bk_RDB3cnwyQ-5ubZk7_RX2JV57EOKAheQgjdTae7quvrouorgIfKoA1Ki9RTIudenMXWy2IVeCoSBQ91kXFuXbGJdDoVJyfZbAuedLkwDT9E73AjzXDnNSm4WWp7eM4a-kWdVajoPL0AF_EZUEBXGM96DwtiXzyW3Y0r5ZlH3GsdtZAfHva9NwzSoETF2gSbDYHoJnZ1xmdy7f-mfR2utqCTjRopuQFbZnETtsddrbdb8P3YnJZf6cNjNmKzNREK_Pz2Q6_oLGSagtzrNX4gK9g4D5nLgFyzNr6LIfZlLmuT2DHL5ZpV87O2MljF5gtGtMg4wPI8T4EpV1ACTSf7PdtuB95Onr4ZP_PaKg24nwgePStUZI2NFf6esVwlkQ2U4Hnha-6HOtUFt2HOkygwBi9XecEzLbjQibBJkaP-78JgUS7MbWAIJ9BkC5PmlPFq8PKpfV-ZSAUCu-Z2CAfdVknVUphTJY1T2ZAvh5IWV9LiDuFB33TZ8Hb8qdEe7bdEsEGMuYpCi1QtEeEhSo2HsN-JgWwVu5JhHPkii8MgGcKjRjT68Ymp-2h-PJLl6r38WH-QxKRD4xw4gfj7POS78avX9HLn35veh8uzo4l8-Xz6Yg-uhOQFcJFv-zCoV5_MXbikPtfzanXPKcUvegoX6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VeloxChem%3A+A+Python%E2%80%90driven+density%E2%80%90functional+theory+program+for+spectroscopy+simulations+in+high%E2%80%90performance+computing+environments&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Rinkevicius%2C+Zilvinas&rft.au=Li%2C+Xin&rft.au=Vahtras%2C+Olav&rft.au=Ahmadzadeh%2C+Karan&rft.date=2020-09-01&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=10&rft.issue=5&rft_id=info:doi/10.1002%2Fwcms.1457&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wcms_1457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon