Construction of Runge–Kutta type methods for solving ordinary differential equations

In this paper, we study Runge–Kutta methods with continuous stage, introduced by Butcher in 1987. By setting the coefficients of this family of methods and choosing the appropriate numerical integration, we derive new classes of Runge–Kutta methods. Furthermore, we extend the W-transformation techni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 234; s. 179 - 191
Hlavní autoři: Tang, Wensheng, Sun, Yajuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.05.2014
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study Runge–Kutta methods with continuous stage, introduced by Butcher in 1987. By setting the coefficients of this family of methods and choosing the appropriate numerical integration, we derive new classes of Runge–Kutta methods. Furthermore, we extend the W-transformation technique by permitting W to be a non-square matrix. This allows us to construct more high-order implicit Runge–Kutta methods with some geometric properties. Specially, we provide Runge–Kutta methods with continuous stage which are (conjugate) symplectic, symmetric or energy-preserving for solving Hamiltonian systems. We also present some numerical experiments to verify our results.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.02.042