Feature subset selection by gravitational search algorithm optimization
A new method for feature subset selection in machine learning, FSS-MGSA (Feature Subset Selection by Modified Gravitational Search Algorithm), is presented. FSS-MGSA is an evolutionary, stochastic search algorithm based on the law of gravity and mass interactions, and it can be executed when domain...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 281; S. 128 - 146 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
10.10.2014
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A new method for feature subset selection in machine learning, FSS-MGSA (Feature Subset Selection by Modified Gravitational Search Algorithm), is presented. FSS-MGSA is an evolutionary, stochastic search algorithm based on the law of gravity and mass interactions, and it can be executed when domain knowledge is not available. A wrapper approach, over Naive-Bayes, ID3, K-Nearest Neighbor and Support Vector Machine learning algorithms, is used to evaluate the goodness of each visited solution. The key to the success of the MGSA is to utilize the piecewise linear chaotic map for increasing its diversity of species, and to use sequential quadratic programming for accelerating local exploitation. Promising results are achieved in a variety of tasks where domain knowledge is not available. The experimental results show that the proposed method has the ability of selecting the discriminating input features correctly and can achieve high accuracy of classification, which is comparable to or better than well-known similar classifier systems. Furthermore, the MGSA is tested on ten functions provided by CEC 2005 special session and compared with various modified Gravitational Search Algorithm, Particle Swarm Optimization, and Genetic Algorithm. The obtained results confirm the high performance of the MGSA in solving various problems in optimization. |
|---|---|
| AbstractList | A new method for feature subset selection in machine learning, FSS-MGSA (Feature Subset Selection by Modified Gravitational Search Algorithm), is presented. FSS-MGSA is an evolutionary, stochastic search algorithm based on the law of gravity and mass interactions, and it can be executed when domain knowledge is not available. A wrapper approach, over Naive-Bayes, ID3, K-Nearest Neighbor and Support Vector Machine learning algorithms, is used to evaluate the goodness of each visited solution. The key to the success of the MGSA is to utilize the piecewise linear chaotic map for increasing its diversity of species, and to use sequential quadratic programming for accelerating local exploitation. Promising results are achieved in a variety of tasks where domain knowledge is not available. The experimental results show that the proposed method has the ability of selecting the discriminating input features correctly and can achieve high accuracy of classification, which is comparable to or better than well-known similar classifier systems. Furthermore, the MGSA is tested on ten functions provided by CEC 2005 special session and compared with various modified Gravitational Search Algorithm, Particle Swarm Optimization, and Genetic Algorithm. The obtained results confirm the high performance of the MGSA in solving various problems in optimization. |
| Author | Chang, XiaoMing Li, JingXia Zhang, ZhaoXia Liu, Yi Xiong, XiaoYan Han, XiaoHong Quan, Long |
| Author_xml | – sequence: 1 givenname: XiaoHong surname: Han fullname: Han, XiaoHong email: hanxiaohong@tyut.edu.cn, jmqchs@sohu.com – sequence: 2 givenname: XiaoMing surname: Chang fullname: Chang, XiaoMing – sequence: 3 givenname: Long surname: Quan fullname: Quan, Long – sequence: 4 givenname: XiaoYan surname: Xiong fullname: Xiong, XiaoYan – sequence: 5 givenname: JingXia surname: Li fullname: Li, JingXia – sequence: 6 givenname: ZhaoXia surname: Zhang fullname: Zhang, ZhaoXia – sequence: 7 givenname: Yi surname: Liu fullname: Liu, Yi |
| BookMark | eNp9kLFOwzAQhi1UJNrCA7BlZEk4O7GTiAlVtCBVYoHZcpxL6yqJi-0glacnpZ0YOp1O__-ddN-MTHrbIyH3FBIKVDzuEtP7hAHNEuAJpHBFprTIWSxYSSdkCsAgBsb5DZl5vwOALBdiSlZLVGFwGPmh8hgijy3qYGwfVYdo49S3Ceq4qnaMlNPbSLUb60zYdpHdB9OZn7_8llw3qvV4d55z8rl8-Vi8xuv31dvieR3rtBQhzmihFK_KrNBlysuSUaHztBCa5pmm2KiC8VQLXTe0ZlBD0-QZpBWvERBzxdI5eTjd3Tv7NaAPsjNeY9uqHu3gJRUZY5ymQMcqPVW1s947bOTemU65g6Qgj9LkTo7S5FGaBC5HaSOT_2P0WUBwyrQXyacTieP33wad9Npgr7E2bjQqa2su0L_rzYnZ |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105556 crossref_primary_10_1016_j_jbi_2020_103466 crossref_primary_10_1016_j_ins_2019_05_038 crossref_primary_10_3390_informatics5010013 crossref_primary_10_1016_j_knosys_2019_105404 crossref_primary_10_1007_s00500_019_04203_z crossref_primary_10_1016_j_aca_2018_05_029 crossref_primary_10_1016_j_ins_2015_07_041 crossref_primary_10_1016_j_apm_2020_11_013 crossref_primary_10_1016_j_swevo_2020_100661 crossref_primary_10_1016_j_eswa_2021_116368 crossref_primary_10_1155_2021_5549992 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1016_j_procs_2019_06_041 crossref_primary_10_1016_j_ins_2017_08_047 crossref_primary_10_1155_2021_6490118 crossref_primary_10_1007_s12652_022_04103_5 crossref_primary_10_1111_exsy_12816 crossref_primary_10_1007_s12559_018_9582_9 crossref_primary_10_1007_s12559_018_9588_3 crossref_primary_10_1016_j_jestch_2023_101453 crossref_primary_10_1016_j_engappai_2015_12_016 crossref_primary_10_1109_ACCESS_2019_2935833 crossref_primary_10_1016_j_swevo_2018_02_018 crossref_primary_10_1007_s00500_017_2554_2 crossref_primary_10_1093_comjnl_bxx048 crossref_primary_10_1016_j_suscom_2017_08_006 crossref_primary_10_1007_s10586_021_03254_y crossref_primary_10_1016_j_ins_2019_06_063 crossref_primary_10_1016_j_jnca_2016_11_001 crossref_primary_10_1016_j_knosys_2015_04_007 crossref_primary_10_3390_s22083066 crossref_primary_10_1016_j_physb_2024_415900 crossref_primary_10_1109_TEVC_2015_2504420 crossref_primary_10_3233_JIFS_200258 crossref_primary_10_1016_j_knosys_2017_02_013 crossref_primary_10_1016_j_eswa_2024_123871 crossref_primary_10_1080_24751839_2018_1423792 crossref_primary_10_3233_JIFS_171979 crossref_primary_10_1016_j_ins_2015_07_023 crossref_primary_10_1016_j_ygeno_2020_07_027 crossref_primary_10_1007_s10489_017_0894_3 crossref_primary_10_1016_j_engappai_2016_11_003 crossref_primary_10_1109_ACCESS_2021_3056407 crossref_primary_10_1002_cjce_23436 crossref_primary_10_1007_s12351_016_0240_2 crossref_primary_10_1016_j_knosys_2017_10_018 crossref_primary_10_1007_s00500_016_2257_0 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1016_j_ins_2015_06_007 crossref_primary_10_1109_ACCESS_2022_3156120 crossref_primary_10_1007_s00521_014_1757_z crossref_primary_10_1016_j_neucom_2015_12_012 crossref_primary_10_1007_s10844_024_00870_z crossref_primary_10_1063_1_5009693 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1142_S0218001416390018 crossref_primary_10_1016_j_eswa_2019_03_015 |
| Cites_doi | 10.1007/s10115-008-0139-1 10.1016/j.ins.2012.01.003 10.1016/j.engappai.2013.04.002 10.1109/TKDE.2005.66 10.1016/j.ins.2011.08.020 10.1016/j.ins.2011.01.035 10.1016/j.enconman.2013.10.060 10.1016/j.ins.2012.04.039 10.1016/j.ins.2013.10.012 10.1016/j.scient.2011.04.003 10.1016/j.enconman.2010.07.012 10.1016/j.procs.2010.12.200 10.2174/1386207013330733 10.1016/j.ins.2013.05.035 10.1016/j.asoc.2009.08.038 10.1142/S0218127495001198 10.1016/j.apm.2013.05.016 10.1016/j.ins.2013.12.029 10.1016/j.ins.2013.02.029 10.1016/j.amc.2007.10.017 10.1016/j.eswa.2011.01.018 10.1016/j.eswa.2005.09.024 10.1016/j.asoc.2007.10.007 10.1016/j.ijepes.2011.08.012 10.1109/ISDA.2007.101 10.1016/j.asoc.2009.11.014 10.1016/j.engappai.2013.05.011 10.1016/j.ijepes.2013.08.010 10.1016/j.ejor.2004.08.010 10.1007/BF00116251 10.1016/j.ins.2013.02.045 10.1016/j.neucom.2013.07.018 10.1016/j.ins.2014.01.008 10.1016/S0004-3702(97)00043-X 10.1109/34.990133 10.1016/j.eswa.2011.01.129 10.1016/j.ejor.2008.10.007 10.1016/S1088-467X(97)00008-5 10.1016/j.ins.2013.09.034 10.1016/j.ins.2009.03.004 10.1016/j.ins.2011.11.039 10.1016/j.ijepes.2013.02.022 10.1016/j.engappai.2012.01.014 10.1016/S0031-3203(01)00046-2 10.1016/j.ins.2012.09.041 10.1016/j.ins.2009.02.014 10.1016/j.ins.2013.10.013 10.1016/j.ins.2011.09.027 10.1016/j.ins.2012.10.006 10.1016/j.ins.2012.03.012 10.1016/j.ins.2012.05.027 10.1016/j.eswa.2005.07.019 10.1109/34.574797 10.1109/IJCNN.2007.4371101 10.1109/TIT.1967.1053964 10.1016/j.ins.2010.12.013 10.1109/TPAMI.2004.105 10.1007/s11047-009-9175-3 10.1162/089976698300017197 10.1016/j.patrec.2006.09.003 10.1016/j.amc.2007.02.103 10.1162/089976699300016007 10.2307/1403797 10.1016/j.ins.2012.07.032 10.1016/j.ins.2007.06.018 10.1016/j.ins.2012.06.033 10.1016/j.ins.2013.12.003 10.1109/4235.850656 10.1016/j.ins.2010.06.007 10.1016/j.ins.2013.08.043 10.1016/j.ins.2013.03.054 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. |
| Copyright_xml | – notice: 2014 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2014.05.030 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 146 |
| ExternalDocumentID | 10_1016_j_ins_2014_05_030 S0020025514005829 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-418aa5b948c93599216c7386c174c1efa8253c6cdf1d20d0ff7403b5de0ee7a23 |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340315600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sun Nov 09 12:58:00 EST 2025 Tue Nov 18 21:54:59 EST 2025 Sat Nov 29 06:24:54 EST 2025 Fri Feb 23 02:23:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature subset selection Gravitational search algorithm Chaotic map Sequential quadratic programming Learning algorithm Classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-418aa5b948c93599216c7386c174c1efa8253c6cdf1d20d0ff7403b5de0ee7a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1642251301 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1642251301 crossref_primary_10_1016_j_ins_2014_05_030 crossref_citationtrail_10_1016_j_ins_2014_05_030 elsevier_sciencedirect_doi_10_1016_j_ins_2014_05_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-10 |
| PublicationDateYYYYMMDD | 2014-10-10 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | García, García, Melian, Moreno, Moreno (b0100) 2006; 169 García-Torres, Armañanzas, Bielza, Larrañaga (b0115) 2013; 222 Wang, Yang, Teng, Xia, Jensen (b0390) 2007; 28 Sarafrazi, Nezamabadi-pour, Saryazdi (b0335) 2011; 18 Weiss, Elovici, Rokach (b0395) 2013; 222 Kohavi, John (b0175) 1997; 97 Mitra, Murthy, Pal (b0260) 2002; 24 Zhuang, Jiang, Wu, Li, Chiu, Hu (b0430) 2014; 263 Musharavati, Hamouda (b0265) 2011; 38 Huang, Wang (b0155) 2006; 31 Witten, Frank (b0405) 2005 Raymer, Punch, Goodman, Kuhn, Jain (b0320) 2000; 4 Jain, Zongker (b0165) 1997; 19 Cover, Hart (b0050) 1967; 13 Li, Yang, Zhang, Fan (b0210) 2013; 221 Luo, Yi (b0230) 2008; 199 David, Precup, Petriu, Rădac, Preitl (b0065) 2013; 247 Chuang, Yang, Li (b0040) 2011; 11 J. Platt, Machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods – Support Vector Learning, 1998. E. Rashedi, Gravitational Search Algorithm, M.Sc. Thesis, Electrical Engineering Department, Shahid Bahonar University of Kerman, Iran, 2007. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Allocation of static var compensator using gravitational search algorithm, in: Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems, Mashhad, Iran, 2007. R.B. Wilson, A Simplicial Algorithm for Concave Programming, Ph.D. thesis. Harvard University, Cambridge, MA, 1963. R. Bello, Y. Gomez, M.M. Garcia, A. Nowe, Two-step particle swarm optimization to solve the feature selection problem, in: Seventh International Conference on Intelligent Systems Design and Applications, ISDA, 2007, pp. 691–696. K. Tanaka, T. Kurita, T. Kawabe, Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression, in: Proceedings of International Joint Conference on Networks, Orlando, Florida, USA, 2007, pp. 12–17. Banerjee, Pal (b0010) 2014; 264 Guyon, Elisseeff (b0130) 2003; 3 Dor, Reich (b0080) 2012; 189 Ren, Sohrab (b0325) 2013; 236 Oh, Lee, Moon (b0270) 2004; 26 Li, Zhou (b0190) 2011; 52 Pacheco, Casado, Nunez (b0275) 2009; 199 Rashedi, Nezamabadi-Pour, Saryazdi (b0315) 2010; 9 Masciari, Mazzeo, Zaniolo (b0245) 2014; 262 Rashedi, Nezamabadi-pour, Saryazdi (b0310) 2009; 179 Dash, Choi, Scheuermann, Liu (b0060) 2002 Fletcher (b0095) 1987 Mendenhall, Sincich (b0255) 1998 García-Pedrajas, Haro-García, Pérez-Rodríguez (b0110) 2013; 228 Shaw, Mukherjee, Ghoshal (b0350) 2014; 55 Mendel, Krohling, Campos (b0250) 2011; 181 Chen, Yuan, Tian, Ji (b0030) 2014; 78 Derrac, Cornelis, García, Herrera (b0070) 2012; 186 Peralta, Soto (b0280) 2014; 269 Han, Chang (b0135) 2012; 208 Sánchez del Rivero, Montañés-Roces, Roza-Delgado, Soldado, Luaces, Quevedo, Bahamonde (b0330) 2013; 241 Yin, Hu, Yang, Li, Gu (b0415) 2011; 38 Dash, Liu (b0055) 1997; 1 Laere, Schockaert, Dhoedt (b0180) 2013; 238 Ju, Hong (b0170) 2013; 37 Han, Chang (b0150) 2012; 25 Yu, Wong, You, Han (b0420) 2012; 203 Huang, Dun (b0160) 2008; 8 Baranovsky, Daems (b0015) 1995; 5 Han, Quan, Xiong, Wu (b0145) 2013; 26 Y. Liu, F. Dellaert, A classification based similarity metric for 3D image retrieval, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 1998, pp. 800–805. Alpaydin (b0005) 1999; 11 Han, Chang (b0140) 2013; 208 Shrivastava, Tyagi (b0360) 2014; 259 P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real- Parameter Optimization, Tech. Rep, Nanyang Technological University, vol. 2005005, Singapore, 2005. Choi, Ryu, Yoo, Choi (b0035) 2012; 214 Dietterich (b0075) 1998; 10 Santos, Brezo, Ugarte-Pedrero, Bringas (b0340) 2013; 231 Xiang, Liao, Wong (b0410) 2007; 190 Fix, Hodges (b0090) 1989; 57 Li, Li, Kou (b0200) 2014; 124 Tan (b0370) 2006; 30 Maldonado, Weber (b0240) 2009; 179 Zhang, Sun (b0425) 2002; 35 Shreem, Abdullah, Nazri (b0355) 2014; 258 Cieslak, Chawla (b0045) 2009; 18 B. Cestnik, Estimating probabilities: a crucial task in machine learning, in: Proceedings of the European Conference on Artificial Intelligence (ECAI-90) Stockholm, Sweden, 1990, pp. 147–149. Li, Darden, Weingberg, Levine, Pedersen (b0195) 2001; 4 Shaw, Mukherjee, Ghoshal (b0345) 2012; 35 Dowlatshahi, Nezamabadi-pour, Mashinchi (b0085) 2014; 258 Quinlan (b0295) 1986; 1 Vapnik (b0385) 1995 Li, Zhou, Xiao, Xiao (b0205) 2013; 26 Tripathi, Bandyopadhyay, Pal (b0380) 2007; 177 Lew (b0185) 2001 Liu, Yu (b0220) 2005; 17 Ghasemi, Shayeghi, Alkhatib (b0120) 2013; 51 Mahadevan, Kannan (b0235) 2010; 10 Guan, Zhou, Xiao, Guo, Yang (b0125) 2013; 222 Liu, Zhong, Qian (b0215) 2010; 36 Gao, Wang, Ji, Zha, Shen (b0105) 2012; 194 Pourhabibi, Imani, Haratizadeh (b0290) 2011; 3 10.1016/j.ins.2014.05.030_b0025 10.1016/j.ins.2014.05.030_b0300 Derrac (10.1016/j.ins.2014.05.030_b0070) 2012; 186 10.1016/j.ins.2014.05.030_b0020 Alpaydin (10.1016/j.ins.2014.05.030_b0005) 1999; 11 Yu (10.1016/j.ins.2014.05.030_b0420) 2012; 203 Mendel (10.1016/j.ins.2014.05.030_b0250) 2011; 181 Yin (10.1016/j.ins.2014.05.030_b0415) 2011; 38 Lew (10.1016/j.ins.2014.05.030_b0185) 2001 10.1016/j.ins.2014.05.030_b0305 10.1016/j.ins.2014.05.030_b0225 Jain (10.1016/j.ins.2014.05.030_b0165) 1997; 19 Gao (10.1016/j.ins.2014.05.030_b0105) 2012; 194 Dash (10.1016/j.ins.2014.05.030_b0055) 1997; 1 Huang (10.1016/j.ins.2014.05.030_b0155) 2006; 31 Witten (10.1016/j.ins.2014.05.030_b0405) 2005 Choi (10.1016/j.ins.2014.05.030_b0035) 2012; 214 David (10.1016/j.ins.2014.05.030_b0065) 2013; 247 Mitra (10.1016/j.ins.2014.05.030_b0260) 2002; 24 Sarafrazi (10.1016/j.ins.2014.05.030_b0335) 2011; 18 García-Torres (10.1016/j.ins.2014.05.030_b0115) 2013; 222 Raymer (10.1016/j.ins.2014.05.030_b0320) 2000; 4 Guyon (10.1016/j.ins.2014.05.030_b0130) 2003; 3 Fix (10.1016/j.ins.2014.05.030_b0090) 1989; 57 Huang (10.1016/j.ins.2014.05.030_b0160) 2008; 8 Dowlatshahi (10.1016/j.ins.2014.05.030_b0085) 2014; 258 Cieslak (10.1016/j.ins.2014.05.030_b0045) 2009; 18 Fletcher (10.1016/j.ins.2014.05.030_b0095) 1987 Tripathi (10.1016/j.ins.2014.05.030_b0380) 2007; 177 Ghasemi (10.1016/j.ins.2014.05.030_b0120) 2013; 51 Ren (10.1016/j.ins.2014.05.030_b0325) 2013; 236 García (10.1016/j.ins.2014.05.030_b0100) 2006; 169 Mendenhall (10.1016/j.ins.2014.05.030_b0255) 1998 Han (10.1016/j.ins.2014.05.030_b0145) 2013; 26 Laere (10.1016/j.ins.2014.05.030_b0180) 2013; 238 Wang (10.1016/j.ins.2014.05.030_b0390) 2007; 28 Zhuang (10.1016/j.ins.2014.05.030_b0430) 2014; 263 Dash (10.1016/j.ins.2014.05.030_b0060) 2002 Masciari (10.1016/j.ins.2014.05.030_b0245) 2014; 262 Cover (10.1016/j.ins.2014.05.030_b0050) 1967; 13 Musharavati (10.1016/j.ins.2014.05.030_b0265) 2011; 38 Pacheco (10.1016/j.ins.2014.05.030_b0275) 2009; 199 Peralta (10.1016/j.ins.2014.05.030_b0280) 2014; 269 Santos (10.1016/j.ins.2014.05.030_b0340) 2013; 231 10.1016/j.ins.2014.05.030_b0365 Shaw (10.1016/j.ins.2014.05.030_b0345) 2012; 35 Xiang (10.1016/j.ins.2014.05.030_b0410) 2007; 190 Rashedi (10.1016/j.ins.2014.05.030_b0315) 2010; 9 Chen (10.1016/j.ins.2014.05.030_b0030) 2014; 78 Dor (10.1016/j.ins.2014.05.030_b0080) 2012; 189 10.1016/j.ins.2014.05.030_b0285 Shaw (10.1016/j.ins.2014.05.030_b0350) 2014; 55 García-Pedrajas (10.1016/j.ins.2014.05.030_b0110) 2013; 228 Mahadevan (10.1016/j.ins.2014.05.030_b0235) 2010; 10 Tan (10.1016/j.ins.2014.05.030_b0370) 2006; 30 Li (10.1016/j.ins.2014.05.030_b0205) 2013; 26 Quinlan (10.1016/j.ins.2014.05.030_b0295) 1986; 1 Baranovsky (10.1016/j.ins.2014.05.030_b0015) 1995; 5 10.1016/j.ins.2014.05.030_b0400 Pourhabibi (10.1016/j.ins.2014.05.030_b0290) 2011; 3 Sánchez del Rivero (10.1016/j.ins.2014.05.030_b0330) 2013; 241 Shrivastava (10.1016/j.ins.2014.05.030_b0360) 2014; 259 Rashedi (10.1016/j.ins.2014.05.030_b0310) 2009; 179 Chuang (10.1016/j.ins.2014.05.030_b0040) 2011; 11 Guan (10.1016/j.ins.2014.05.030_b0125) 2013; 222 Oh (10.1016/j.ins.2014.05.030_b0270) 2004; 26 Liu (10.1016/j.ins.2014.05.030_b0220) 2005; 17 10.1016/j.ins.2014.05.030_b0375 Weiss (10.1016/j.ins.2014.05.030_b0395) 2013; 222 Han (10.1016/j.ins.2014.05.030_b0135) 2012; 208 Han (10.1016/j.ins.2014.05.030_b0140) 2013; 208 Ju (10.1016/j.ins.2014.05.030_b0170) 2013; 37 Han (10.1016/j.ins.2014.05.030_b0150) 2012; 25 Zhang (10.1016/j.ins.2014.05.030_b0425) 2002; 35 Li (10.1016/j.ins.2014.05.030_b0210) 2013; 221 Vapnik (10.1016/j.ins.2014.05.030_b0385) 1995 Dietterich (10.1016/j.ins.2014.05.030_b0075) 1998; 10 Li (10.1016/j.ins.2014.05.030_b0195) 2001; 4 Banerjee (10.1016/j.ins.2014.05.030_b0010) 2014; 264 Maldonado (10.1016/j.ins.2014.05.030_b0240) 2009; 179 Luo (10.1016/j.ins.2014.05.030_b0230) 2008; 199 Li (10.1016/j.ins.2014.05.030_b0190) 2011; 52 Liu (10.1016/j.ins.2014.05.030_b0215) 2010; 36 Shreem (10.1016/j.ins.2014.05.030_b0355) 2014; 258 Li (10.1016/j.ins.2014.05.030_b0200) 2014; 124 Kohavi (10.1016/j.ins.2014.05.030_b0175) 1997; 97 |
| References_xml | – volume: 3 start-page: 157 year: 2003 end-page: 1182 ident: b0130 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 208 start-page: 14 year: 2012 end-page: 27 ident: b0135 article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter publication-title: Inform. Sci. – volume: 262 start-page: 32 year: 2014 end-page: 45 ident: b0245 article-title: Analysing microarray expression data through effective clustering publication-title: Inform. Sci. – volume: 221 start-page: 60 year: 2013 end-page: 71 ident: b0210 article-title: Probabilistic support vector machines for classification of noise affected data publication-title: Inform. Sci. – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: b0055 article-title: Feature selection for classification publication-title: Intell. Data Anal. – volume: 208 start-page: 103 year: 2013 end-page: 118 ident: b0140 article-title: An intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transforms publication-title: Inform. Sci. – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: b0295 article-title: Induction of decision tree publication-title: Mach. Learn. – year: 2005 ident: b0405 publication-title: Data Mining: Practical Machine Learning Tools and Techniques – reference: R. Bello, Y. Gomez, M.M. Garcia, A. Nowe, Two-step particle swarm optimization to solve the feature selection problem, in: Seventh International Conference on Intelligent Systems Design and Applications, ISDA, 2007, pp. 691–696. – volume: 194 start-page: 224 year: 2012 end-page: 239 ident: b0105 article-title: k-Partite graph reinforcement and its application in multimedia information retrieval publication-title: Inform. Sci. – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b0050 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – volume: 124 start-page: 139 year: 2014 end-page: 148 ident: b0200 article-title: Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system publication-title: Neurocomputing – volume: 169 start-page: 477 year: 2006 end-page: 489 ident: b0100 article-title: Solving feature subset selection problem by a parallel scatter search publication-title: Euro. J. Operat. Res. – volume: 36 start-page: 267 year: 2010 end-page: 272 ident: b0215 article-title: An improved chaos-particle swarm optimization algorithm publication-title: J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) – reference: R.B. Wilson, A Simplicial Algorithm for Concave Programming, Ph.D. thesis. Harvard University, Cambridge, MA, 1963. – volume: 25 start-page: 766 year: 2012 end-page: 774 ident: b0150 article-title: Chaotic secure communication based on a gravitational search algorithm filter publication-title: Eng. Appl. Artif. Intell. – reference: Y. Liu, F. Dellaert, A classification based similarity metric for 3D image retrieval, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 1998, pp. 800–805. – volume: 263 start-page: 60 year: 2014 end-page: 86 ident: b0430 article-title: Efficient and robust large medical image retrieval in mobile cloud computing environment publication-title: Inform. Sci. – volume: 179 start-page: 2208 year: 2009 end-page: 2217 ident: b0240 article-title: A wrapper method for feature selection using support vector machines publication-title: Inform. Sci. – volume: 37 start-page: 9643 year: 2013 end-page: 9651 ident: b0170 article-title: Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting publication-title: Appl. Math. Modell. – year: 1987 ident: b0095 article-title: Practical Methods of Optimization – volume: 241 start-page: 58 year: 2013 end-page: 69 ident: b0330 article-title: Feature selection for classification of animal feed ingredients from near infrared microscopy spectra publication-title: Inform. Sci. – volume: 78 start-page: 306 year: 2014 end-page: 315 ident: b0030 article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system publication-title: Energy Convers. Manage. – volume: 238 start-page: 52 year: 2013 end-page: 74 ident: b0180 article-title: Georeferencing Flickr resources based on textual meta-data publication-title: Inform. Sci. – reference: B. Cestnik, Estimating probabilities: a crucial task in machine learning, in: Proceedings of the European Conference on Artificial Intelligence (ECAI-90) Stockholm, Sweden, 1990, pp. 147–149. – volume: 186 start-page: 73 year: 2012 end-page: 92 ident: b0070 article-title: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection publication-title: Inform. Sci. – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: b0160 article-title: A distributed PSO–SVM hybrid system with features selection and parameter optimization publication-title: Appl. Soft Comput. – start-page: 115 year: 2002 end-page: 122 ident: b0060 article-title: Feature selection for clustering-a filter solution publication-title: Proceedings of the Second IEEE International Conference on Data Mining (ICDM’02) – volume: 10 start-page: 641 year: 2010 end-page: 652 ident: b0235 article-title: Comprehensive learning particle swarm optimization for reactive power dispatch publication-title: Appl. Soft Comput. – volume: 38 start-page: 9319 year: 2011 end-page: 9324 ident: b0415 article-title: A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering publication-title: Exp. Syst. Appl. – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: b0155 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Exp. Syst. Appl. – volume: 52 start-page: 374 year: 2011 end-page: 381 ident: b0190 article-title: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm publication-title: Energy Convers. Manage. – volume: 189 start-page: 176 year: 2012 end-page: 190 ident: b0080 article-title: Strengthening learning algorithms by feature discovery publication-title: Inform. Sci. – reference: K. Tanaka, T. Kurita, T. Kawabe, Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression, in: Proceedings of International Joint Conference on Networks, Orlando, Florida, USA, 2007, pp. 12–17. – volume: 5 start-page: 1585 year: 1995 end-page: 1598 ident: b0015 article-title: Design of one-dimensional chaotic maps with prescribed statistical properties publication-title: Int. J. Bifur. Chaos – volume: 231 start-page: 64 year: 2013 end-page: 82 ident: b0340 article-title: pcode sequences as representation of executables for data-mining-based unknown Malware detection publication-title: Inform. Sci. – volume: 228 start-page: 150 year: 2013 end-page: 174 ident: b0110 article-title: A scalable approach to simultaneous evolutionary instance and feature selection publication-title: Inform. Sci. – volume: 26 start-page: 1424 year: 2004 end-page: 1437 ident: b0270 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 239 year: 2011 end-page: 248 ident: b0040 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. – reference: E. Rashedi, Gravitational Search Algorithm, M.Sc. Thesis, Electrical Engineering Department, Shahid Bahonar University of Kerman, Iran, 2007. – volume: 236 start-page: 109 year: 2013 end-page: 125 ident: b0325 article-title: Class-indexing-based term weighting for automatic text classification publication-title: Inform. Sci. – year: 1995 ident: b0385 article-title: The Nature of Statistical Learning Theory – volume: 57 start-page: 238 year: 1989 end-page: 247 ident: b0090 article-title: Discriminatory analysis-nonparametric discrimination: consistency properties publication-title: Int. Statist. Rev. – volume: 259 start-page: 212 year: 2014 end-page: 224 ident: b0360 article-title: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching publication-title: Inform. Sci. – volume: 9 start-page: 727 year: 2010 end-page: 745 ident: b0315 article-title: BGSA: binary gravitational search algorithm publication-title: Nat. Comput. – volume: 214 start-page: 76 year: 2012 end-page: 90 ident: b0035 article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine publication-title: Inform. Sci. – volume: 10 start-page: 1895 year: 1998 end-page: 1924 ident: b0075 article-title: Approximate statistical tests for comparing supervised learning algorithms publication-title: Neural Comput. – volume: 247 start-page: 154 year: 2013 end-page: 173 ident: b0065 article-title: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity publication-title: Inform. Sci. – volume: 181 start-page: 4494 year: 2011 end-page: 4514 ident: b0250 article-title: Swarm algorithms with chaotic jumps applied to noisy optimization problems publication-title: Inform. Sci. – volume: 258 start-page: 94 year: 2014 end-page: 107 ident: b0085 article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems publication-title: Inform. Sci. – reference: J. Platt, Machines using sequential minimal optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Advances in Kernel Methods – Support Vector Learning, 1998. – volume: 51 start-page: 190 year: 2013 end-page: 200 ident: b0120 article-title: Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 199 start-page: 611 year: 2008 end-page: 622 ident: b0230 article-title: A co-evolving framework for robust particle swarm optimization publication-title: Appl. Math. Comput. – volume: 30 start-page: 290 year: 2006 end-page: 298 ident: b0370 article-title: An effective refinement strategy for KNN text classifier publication-title: Exp. Syst. Appl. – reference: P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real- Parameter Optimization, Tech. Rep, Nanyang Technological University, vol. 2005005, Singapore, 2005. – volume: 222 start-page: 229 year: 2013 end-page: 246 ident: b0115 article-title: Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data publication-title: Inform. Sci. – volume: 24 start-page: 301 year: 2002 end-page: 312 ident: b0260 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 1885 year: 1999 end-page: 1892 ident: b0005 article-title: Combined 5×2cv F test for comparing supervised classification learning algorithms publication-title: Neural Comput. – volume: 264 start-page: 118 year: 2014 end-page: 134 ident: b0010 article-title: Feature selection with SVD entropy: some modification and extension publication-title: Inform. Sci. – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: b0220 article-title: Towards integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. – volume: 55 start-page: 29 year: 2014 end-page: 40 ident: b0350 article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm publication-title: Int. J. Electr. Pow. Energy Syst. – reference: E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, Allocation of static var compensator using gravitational search algorithm, in: Proceedings of the First Joint Conference on Fuzzy and Intelligent Systems, Mashhad, Iran, 2007. – volume: 26 start-page: 2424 year: 2013 end-page: 2430 ident: b0145 article-title: Facing the classification of binary problems with a hybrid system based on quantum-inspired binary gravitational search algorithm and K-NN method publication-title: Eng. Appl. Artif. Intell. – volume: 19 start-page: 153 year: 1997 end-page: 158 ident: b0165 article-title: Feature selection: evaluation, application, and small sample performance publication-title: IEEE Trans. Pattern Recog. Mach. Intell. – volume: 35 start-page: 701 year: 2002 end-page: 711 ident: b0425 article-title: Feature selection using tabu search method publication-title: Pattern Recog. – volume: 18 start-page: 83 year: 2009 end-page: 109 ident: b0045 article-title: A framework for monitoring classifiers’ performance: when and why failure occurs? publication-title: Knowl. Inform. Syst. – volume: 222 start-page: 147 year: 2013 end-page: 162 ident: b0125 article-title: Fast dimension reduction for document classification based on imprecise spectrum analysis publication-title: Inform. Sci. – volume: 4 start-page: 727 year: 2001 end-page: 739 ident: b0195 article-title: Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method publication-title: Comb. Chem. High Through. Screen. – volume: 35 start-page: 21 year: 2012 end-page: 33 ident: b0345 article-title: A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems publication-title: Int. J. Electr. Pow. Energy Syst. – volume: 38 start-page: 10770 year: 2011 end-page: 10779 ident: b0265 article-title: Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines publication-title: Exp. Syst. Appl. – volume: 269 start-page: 176 year: 2014 end-page: 187. ident: b0280 article-title: Embedded local feature selection within mixture of experts publication-title: Inform. Sci. – year: 2001 ident: b0185 article-title: Principles of Visual Information Retrieval – volume: 28 start-page: 459 year: 2007 end-page: 471 ident: b0390 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recog. Lett. – volume: 177 start-page: 5033 year: 2007 end-page: 5049 ident: b0380 article-title: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients publication-title: Inform. Sci. – volume: 199 start-page: 506 year: 2009 end-page: 511 ident: b0275 article-title: A variable selection method based on tabu search for logistic regression models publication-title: Euro. J. Operat. Res. – volume: 222 start-page: 247 year: 2013 end-page: 268 ident: b0395 article-title: The CASH algorithm-cost-sensitive attribute selection using histograms publication-title: Inform. Sci. – volume: 190 start-page: 637 year: 2007 end-page: 1645 ident: b0410 article-title: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map publication-title: Appl. Math. Comput. – volume: 26 start-page: 2073 year: 2013 end-page: 2082 ident: b0205 article-title: Hydraulic turbine governing system identification using T–S fuzzy model optimized by chaotic gravitational search algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 3 start-page: 1249 year: 2011 end-page: 1255 ident: b0290 article-title: Feature selection on Persian fonts: a comparative analysis on GAA, GESA and GA publication-title: Proc. Comp. Sci. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b0175 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0310 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. – volume: 4 start-page: 164 year: 2000 end-page: 171 ident: b0320 article-title: Dimensionality reduction using genetic algorithms publication-title: IEEE Trans. Evolut. Comput. – year: 1998 ident: b0255 article-title: Statistics for Engineering and the Sciences – volume: 203 start-page: 83 year: 2012 end-page: 101 ident: b0420 article-title: Visual query processing for efficient image retrieval using a SOM-based filter-refinement scheme publication-title: Inform. Sci. – volume: 258 start-page: 108 year: 2014 end-page: 121 ident: b0355 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inform. Sci. – volume: 18 start-page: 539 year: 2011 end-page: 548 ident: b0335 article-title: Disruption: a new operator in gravitational search algorithm publication-title: Sci. Iran. – volume: 18 start-page: 83 year: 2009 ident: 10.1016/j.ins.2014.05.030_b0045 article-title: A framework for monitoring classifiers’ performance: when and why failure occurs? publication-title: Knowl. Inform. Syst. doi: 10.1007/s10115-008-0139-1 – year: 1987 ident: 10.1016/j.ins.2014.05.030_b0095 – volume: 194 start-page: 224 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0105 article-title: k-Partite graph reinforcement and its application in multimedia information retrieval publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.01.003 – volume: 26 start-page: 2073 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0205 article-title: Hydraulic turbine governing system identification using T–S fuzzy model optimized by chaotic gravitational search algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.04.002 – volume: 17 start-page: 491 year: 2005 ident: 10.1016/j.ins.2014.05.030_b0220 article-title: Towards integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.66 – volume: 231 start-page: 64 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0340 article-title: pcode sequences as representation of executables for data-mining-based unknown Malware detection publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.020 – volume: 222 start-page: 247 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0395 article-title: The CASH algorithm-cost-sensitive attribute selection using histograms publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.01.035 – volume: 78 start-page: 306 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0030 article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.10.060 – volume: 208 start-page: 14 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0135 article-title: A chaotic digital secure communication based on a modified gravitational search algorithm filter publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.04.039 – volume: 258 start-page: 108 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0355 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.10.012 – start-page: 115 year: 2002 ident: 10.1016/j.ins.2014.05.030_b0060 article-title: Feature selection for clustering-a filter solution – volume: 18 start-page: 539 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0335 article-title: Disruption: a new operator in gravitational search algorithm publication-title: Sci. Iran. doi: 10.1016/j.scient.2011.04.003 – volume: 52 start-page: 374 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0190 article-title: Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.07.012 – volume: 3 start-page: 157 year: 2003 ident: 10.1016/j.ins.2014.05.030_b0130 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 1249 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0290 article-title: Feature selection on Persian fonts: a comparative analysis on GAA, GESA and GA publication-title: Proc. Comp. Sci. doi: 10.1016/j.procs.2010.12.200 – volume: 4 start-page: 727 year: 2001 ident: 10.1016/j.ins.2014.05.030_b0195 article-title: Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method publication-title: Comb. Chem. High Through. Screen. doi: 10.2174/1386207013330733 – volume: 247 start-page: 154 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0065 article-title: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.05.035 – volume: 10 start-page: 641 year: 2010 ident: 10.1016/j.ins.2014.05.030_b0235 article-title: Comprehensive learning particle swarm optimization for reactive power dispatch publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.038 – ident: 10.1016/j.ins.2014.05.030_b0285 – volume: 5 start-page: 1585 year: 1995 ident: 10.1016/j.ins.2014.05.030_b0015 article-title: Design of one-dimensional chaotic maps with prescribed statistical properties publication-title: Int. J. Bifur. Chaos doi: 10.1142/S0218127495001198 – ident: 10.1016/j.ins.2014.05.030_b0365 – volume: 37 start-page: 9643 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0170 article-title: Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.05.016 – volume: 264 start-page: 118 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0010 article-title: Feature selection with SVD entropy: some modification and extension publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.12.029 – year: 2001 ident: 10.1016/j.ins.2014.05.030_b0185 – year: 1998 ident: 10.1016/j.ins.2014.05.030_b0255 – volume: 236 start-page: 109 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0325 article-title: Class-indexing-based term weighting for automatic text classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.029 – ident: 10.1016/j.ins.2014.05.030_b0225 – volume: 199 start-page: 611 year: 2008 ident: 10.1016/j.ins.2014.05.030_b0230 article-title: A co-evolving framework for robust particle swarm optimization publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.10.017 – volume: 38 start-page: 9319 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0415 article-title: A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2011.01.018 – volume: 31 start-page: 231 year: 2006 ident: 10.1016/j.ins.2014.05.030_b0155 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 8 start-page: 1381 year: 2008 ident: 10.1016/j.ins.2014.05.030_b0160 article-title: A distributed PSO–SVM hybrid system with features selection and parameter optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.007 – volume: 35 start-page: 21 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0345 article-title: A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems publication-title: Int. J. Electr. Pow. Energy Syst. doi: 10.1016/j.ijepes.2011.08.012 – ident: 10.1016/j.ins.2014.05.030_b0020 doi: 10.1109/ISDA.2007.101 – volume: 11 start-page: 239 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0040 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.014 – volume: 26 start-page: 2424 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0145 article-title: Facing the classification of binary problems with a hybrid system based on quantum-inspired binary gravitational search algorithm and K-NN method publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.05.011 – volume: 55 start-page: 29 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0350 article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm publication-title: Int. J. Electr. Pow. Energy Syst. doi: 10.1016/j.ijepes.2013.08.010 – volume: 169 start-page: 477 year: 2006 ident: 10.1016/j.ins.2014.05.030_b0100 article-title: Solving feature subset selection problem by a parallel scatter search publication-title: Euro. J. Operat. Res. doi: 10.1016/j.ejor.2004.08.010 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.ins.2014.05.030_b0295 article-title: Induction of decision tree publication-title: Mach. Learn. doi: 10.1007/BF00116251 – ident: 10.1016/j.ins.2014.05.030_b0400 – volume: 238 start-page: 52 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0180 article-title: Georeferencing Flickr resources based on textual meta-data publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.045 – volume: 124 start-page: 139 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0200 article-title: Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.07.018 – volume: 269 start-page: 176 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0280 article-title: Embedded local feature selection within mixture of experts publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.01.008 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.ins.2014.05.030_b0175 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 24 start-page: 301 year: 2002 ident: 10.1016/j.ins.2014.05.030_b0260 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990133 – volume: 38 start-page: 10770 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0265 article-title: Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2011.01.129 – volume: 199 start-page: 506 year: 2009 ident: 10.1016/j.ins.2014.05.030_b0275 article-title: A variable selection method based on tabu search for logistic regression models publication-title: Euro. J. Operat. Res. doi: 10.1016/j.ejor.2008.10.007 – volume: 1 start-page: 131 year: 1997 ident: 10.1016/j.ins.2014.05.030_b0055 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.1016/S1088-467X(97)00008-5 – volume: 258 start-page: 94 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0085 article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.09.034 – volume: 179 start-page: 2232 year: 2009 ident: 10.1016/j.ins.2014.05.030_b0310 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 189 start-page: 176 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0080 article-title: Strengthening learning algorithms by feature discovery publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.11.039 – year: 2005 ident: 10.1016/j.ins.2014.05.030_b0405 – volume: 51 start-page: 190 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0120 article-title: Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.02.022 – volume: 25 start-page: 766 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0150 article-title: Chaotic secure communication based on a gravitational search algorithm filter publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.01.014 – volume: 35 start-page: 701 year: 2002 ident: 10.1016/j.ins.2014.05.030_b0425 article-title: Feature selection using tabu search method publication-title: Pattern Recog. doi: 10.1016/S0031-3203(01)00046-2 – ident: 10.1016/j.ins.2014.05.030_b0025 – volume: 221 start-page: 60 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0210 article-title: Probabilistic support vector machines for classification of noise affected data publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.09.041 – volume: 179 start-page: 2208 year: 2009 ident: 10.1016/j.ins.2014.05.030_b0240 article-title: A wrapper method for feature selection using support vector machines publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.02.014 – ident: 10.1016/j.ins.2014.05.030_b0300 – volume: 263 start-page: 60 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0430 article-title: Efficient and robust large medical image retrieval in mobile cloud computing environment publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.10.013 – volume: 186 start-page: 73 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0070 article-title: Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.09.027 – volume: 228 start-page: 150 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0110 article-title: A scalable approach to simultaneous evolutionary instance and feature selection publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.10.006 – volume: 203 start-page: 83 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0420 article-title: Visual query processing for efficient image retrieval using a SOM-based filter-refinement scheme publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.03.012 – volume: 214 start-page: 76 year: 2012 ident: 10.1016/j.ins.2014.05.030_b0035 article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.05.027 – volume: 30 start-page: 290 year: 2006 ident: 10.1016/j.ins.2014.05.030_b0370 article-title: An effective refinement strategy for KNN text classifier publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2005.07.019 – volume: 19 start-page: 153 year: 1997 ident: 10.1016/j.ins.2014.05.030_b0165 article-title: Feature selection: evaluation, application, and small sample performance publication-title: IEEE Trans. Pattern Recog. Mach. Intell. doi: 10.1109/34.574797 – ident: 10.1016/j.ins.2014.05.030_b0375 doi: 10.1109/IJCNN.2007.4371101 – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.ins.2014.05.030_b0050 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – volume: 222 start-page: 229 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0115 article-title: Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.12.013 – volume: 26 start-page: 1424 year: 2004 ident: 10.1016/j.ins.2014.05.030_b0270 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.105 – volume: 9 start-page: 727 year: 2010 ident: 10.1016/j.ins.2014.05.030_b0315 article-title: BGSA: binary gravitational search algorithm publication-title: Nat. Comput. doi: 10.1007/s11047-009-9175-3 – year: 1995 ident: 10.1016/j.ins.2014.05.030_b0385 – volume: 10 start-page: 1895 issue: 7 year: 1998 ident: 10.1016/j.ins.2014.05.030_b0075 article-title: Approximate statistical tests for comparing supervised learning algorithms publication-title: Neural Comput. doi: 10.1162/089976698300017197 – volume: 28 start-page: 459 year: 2007 ident: 10.1016/j.ins.2014.05.030_b0390 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2006.09.003 – volume: 190 start-page: 637 year: 2007 ident: 10.1016/j.ins.2014.05.030_b0410 article-title: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.02.103 – volume: 11 start-page: 1885 year: 1999 ident: 10.1016/j.ins.2014.05.030_b0005 article-title: Combined 5×2cv F test for comparing supervised classification learning algorithms publication-title: Neural Comput. doi: 10.1162/089976699300016007 – volume: 57 start-page: 238 year: 1989 ident: 10.1016/j.ins.2014.05.030_b0090 article-title: Discriminatory analysis-nonparametric discrimination: consistency properties publication-title: Int. Statist. Rev. doi: 10.2307/1403797 – volume: 222 start-page: 147 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0125 article-title: Fast dimension reduction for document classification based on imprecise spectrum analysis publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.07.032 – volume: 177 start-page: 5033 year: 2007 ident: 10.1016/j.ins.2014.05.030_b0380 article-title: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients publication-title: Inform. Sci. doi: 10.1016/j.ins.2007.06.018 – volume: 208 start-page: 103 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0140 article-title: An intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transforms publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.06.033 – volume: 262 start-page: 32 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0245 article-title: Analysing microarray expression data through effective clustering publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.12.003 – volume: 4 start-page: 164 year: 2000 ident: 10.1016/j.ins.2014.05.030_b0320 article-title: Dimensionality reduction using genetic algorithms publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.850656 – volume: 181 start-page: 4494 year: 2011 ident: 10.1016/j.ins.2014.05.030_b0250 article-title: Swarm algorithms with chaotic jumps applied to noisy optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.06.007 – volume: 259 start-page: 212 year: 2014 ident: 10.1016/j.ins.2014.05.030_b0360 article-title: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.08.043 – volume: 36 start-page: 267 year: 2010 ident: 10.1016/j.ins.2014.05.030_b0215 article-title: An improved chaos-particle swarm optimization algorithm publication-title: J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) – ident: 10.1016/j.ins.2014.05.030_b0305 – volume: 241 start-page: 58 year: 2013 ident: 10.1016/j.ins.2014.05.030_b0330 article-title: Feature selection for classification of animal feed ingredients from near infrared microscopy spectra publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.03.054 |
| SSID | ssj0004766 |
| Score | 2.4210217 |
| Snippet | A new method for feature subset selection in machine learning, FSS-MGSA (Feature Subset Selection by Modified Gravitational Search Algorithm), is presented.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 128 |
| SubjectTerms | Algorithms Biological diversity Chaos theory Chaotic map Classification Evolutionary Feature subset selection Genetic algorithms Gravitational search algorithm Learning algorithm MAP (programming language) Optimization Search algorithms Sequential quadratic programming |
| Title | Feature subset selection by gravitational search algorithm optimization |
| URI | https://dx.doi.org/10.1016/j.ins.2014.05.030 https://www.proquest.com/docview/1642251301 |
| Volume | 281 |
| WOSCitedRecordID | wos000340315600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOCAqIAkVGQhyoItmJ8zpWqFAQVCAVKZwsx3FKqjapNtmq_feM48mji1rRA5dolTiWs9_4mxnbM0PIW5_nUZSw3GNaleCgABa5CgMPlG2ghQpBp_RVS77GBwdJlqXfcUG_7csJxHWdXFykZ_8VargHYNvQ2VvAPXYKN-A3gA5XgB2u_wS8NersrkALlGC6nbYvdGNBBkPTFhvCpNw2TsSteKiTo2ZZdb9Pdxrgj1MMzJxbrRiz1PeCKrOdqKvnraxSzX6DatAdF3AsYh98q6YHP1YY7TBrnFXN1PgXyisuRXBhORwPpQ6hAcyzTsqcXn1XkgUJkmMouNO1uPz4F427FYVj8D1sRnUu-uSquH9zJWX2miobDxgOZ9eOJXQhbReShRK6uEs2_DhMkwXZ2P28l32ZYmhjt689fMKwA96fBVwbx3U2zJo2702Uw0fkIfoWdNfJxGNyx9Sb5MEs4-Qm2cY4FfqOzkClyPBPyCeUHuqkh47SQ_NLekV6qJMeOkoPnUvPU_Lz497hh30Pa214OkijzhM8USrMU5FoG6ud-jzSth6sBo9Vc1OqxIfJG-mi5IXPClaWsWBBHhaGGRMrP3hGFnVTm-eEhiXcMRoMc5WLQucqUsZmyUvSQrAyjrYIG_49qXHUth7KibwWtS3yfnzlzGVhuamxGCCROCeceShBvG567c0AnwSKtftmqjbNqpUcfHRwA0AVvrjNOF6S-9MkeUUW3XJltsk9fd5V7fI1yt8fXY6gXg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+subset+selection+by+gravitational+search+algorithm+optimization&rft.jtitle=Information+sciences&rft.au=Han%2C+XiaoHong&rft.au=Chang%2C+XiaoMing&rft.au=Quan%2C+Long&rft.au=Xiong%2C+XiaoYan&rft.date=2014-10-10&rft.issn=0020-0255&rft.volume=281&rft.spage=128&rft.epage=146&rft_id=info:doi/10.1016%2Fj.ins.2014.05.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2014_05_030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |