Improved distributed Δ-coloring

We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these...

Full description

Saved in:
Bibliographic Details
Published in:Distributed computing Vol. 34; no. 4; pp. 239 - 258
Main Authors: Ghaffari, Mohsen, Hirvonen, Juho, Kuhn, Fabian, Maus, Yannic
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer Nature B.V
Subjects:
ISSN:0178-2770, 1432-0452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC’16).
AbstractList We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC’16).
We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC'93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC'16).We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC'93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC'16).
We present a randomized distributed algorithm that computes a Δ-coloring in any non-complete graph with maximum degree Δ≥4 in O(logΔ)+2O(loglogn) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((loglogn)2) rounds when Δ∈[3,O(1)]. Both these algorithms improve on an O(log3n/logΔ)-round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(loglogn) round lower bound of Brandt et al. (STOC’16).
We present a randomized distributed algorithm that computes a $$\Delta $$ Δ -coloring in any non-complete graph with maximum degree $$\Delta \ge 4$$ Δ ≥ 4 in $$O(\log \Delta ) + 2^{O(\sqrt{\log \log n})}$$ O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a $$\Delta $$ Δ -coloring in $$O((\log \log n)^2)$$ O ( ( log log n ) 2 ) rounds when $$\Delta \in [3, O(1)]$$ Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an $$O(\log ^3 n / \log \Delta )$$ O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an $$\Omega (\log \log n)$$ Ω ( log log n ) round lower bound of Brandt et al. (STOC’16).
Author Hirvonen, Juho
Kuhn, Fabian
Maus, Yannic
Ghaffari, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Ghaffari
  fullname: Ghaffari, Mohsen
  organization: ETH Zurich
– sequence: 2
  givenname: Juho
  surname: Hirvonen
  fullname: Hirvonen, Juho
  organization: Aalto University
– sequence: 3
  givenname: Fabian
  orcidid: 0000-0002-1025-5037
  surname: Kuhn
  fullname: Kuhn, Fabian
  email: kuhn@cs.uni-freiburg.de
  organization: University of Freiburg
– sequence: 4
  givenname: Yannic
  surname: Maus
  fullname: Maus, Yannic
  organization: Technion
BookMark eNp9kMtKAzEUhoNUsK2-gKuCGzfRk_vMUoqXQsGNrkNmJiMp00lNMoLv4XP5TKaOIHTR1TmL7z_n55uhSe97i9AlgRsCoG4jAOcSAyUYgJUK8xM0JZxRDFzQCZoCUQWmSsEZmsW4gUwRQqdosdrugv-wzaJxMQVXDSnv31-49p0Prn87R6et6aK9-Jtz9Ppw_7J8wuvnx9Xybo1rVsqEWVVYSUAxIypmgFS8lcxwZo1sKDG84qplYASTRpa0yd_LouZMUtkqJlrO5uh6vJvrvA82Jr11sbZdZ3rrh6ipKAmlAmSZ0asDdOOH0Od2mcofiFBEZIqOVB18jMG2ehfc1oRPTUDvpelRms7S9K80vW9RHIRql0xyvk_BuO54lI3RuNt7s-G_1ZHUD69TgDo
CitedBy_id crossref_primary_10_1007_s00446_025_00485_9
Cites_doi 10.1145/2897518.2897533
10.1016/0095-8956(75)90089-1
10.1017/S030500410002168X
10.1109/FOCS.2012.60
10.1145/3212734.3212769
10.1137/1.9781611974782.166
10.1145/129712.129769
10.1002/jgt.21847
10.1109/FOCS.2016.72
10.1007/978-1-349-03521-2
10.1145/2903137
10.1137/1.9780898719772
10.1145/3357713.3384298
10.1016/j.tcs.2012.09.004
10.1109/SFCS.1989.63504
10.1145/1281100.1281111
10.1109/FOCS.2016.73
10.1145/2897518.2897570
10.1145/3055399.3055471
10.1145/3188745.3188964
10.1007/BF01200759
10.1016/0196-6774(86)90019-2
10.1137/1.9781611975994.76
10.1137/0221015
10.2200/S00520ED1V01Y201307DCT011
10.1007/978-0-8176-4842-8_7
10.1137/1.9781611974331.ch20
10.1137/0215074
10.1137/1.9781611975482.49
10.1145/3212734.3212740
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
U9A
7X8
DOI 10.1007/s00446-021-00397-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 7RQ
  name: Career & Technical Education Database
  url: https://search.proquest.com/career
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0452
EndPage 258
ExternalDocumentID 10_1007_s00446_021_00397_4
GrantInformation_xml – fundername: European Research Council
  grantid: 336495
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7RQ
8AO
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAS
LLZTM
M0N
M4Y
MA-
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YZZ
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZCA
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
7X8
PUEGO
ID FETCH-LOGICAL-c396t-3b8e61073a5b3a01b4f63a43ea6d21a4b47f30a536a692d03198c43626f735f43
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2770
IngestDate Thu Oct 02 07:52:12 EDT 2025
Tue Dec 02 15:56:11 EST 2025
Sat Nov 29 06:13:26 EST 2025
Tue Nov 18 21:28:19 EST 2025
Fri Feb 21 02:48:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-3b8e61073a5b3a01b4f63a43ea6d21a4b47f30a536a692d03198c43626f735f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1025-5037
OpenAccessLink https://link.springer.com/10.1007/s00446-021-00397-4
PQID 2553615715
PQPubID 31799
PageCount 20
ParticipantIDs proquest_miscellaneous_2591225069
proquest_journals_2553615715
crossref_primary_10_1007_s00446_021_00397_4
crossref_citationtrail_10_1007_s00446_021_00397_4
springer_journals_10_1007_s00446_021_00397_4
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Distributed computing
PublicationTitleAbbrev Distrib. Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs. In: Proceedings of West Coast Conference on Combinatorics, Graph Theory and Computing, vol. 26, pp. 125–157. Congressus Numerantium (1979)
Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta + 1$$\end{document})-coloring algorithm? In: Proceedings 50th ACM Symposium on Theory of Computing (STOC 2018) (to appear) (2018)
Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 350–363 (2020)
Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed coloring in sparse graphs with fewer colors. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, UK, 23–27, 2018, pp. 419–425 (2018)
Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of 30th Symposium on Foundations of Computer Science (FOCS 1989), pp. 364–369 (1989)
Bondy, J.A., Murty, U.: Graph Theory with Applications. Elsevier (1976)
Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for Industrial and Applied Mathematics (2017)
Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 615–624. IEEE (2016)
AlonNBabaiLItaiAA fast and simple randomized parallel algorithm for the maximal independent set problemJ. Algorithms19867456758386679210.1016/0196-6774(86)90019-2
CranstonDWRabernLBrooks’ theorem and beyondJ. Graph Theory2015803199225340372610.1002/jgt.21847
BrooksRLOn colouring the nodes of a networkMath. Proc. Camb. Philos. Soc.19413721941971223610.1017/S030500410002168X
Leonard Brooks, R.: On colouring the nodes of a network. In: Classic Papers in Combinatorics, pp. 118–121. Springer (2009)
Kuhn, F.: Faster deterministic distributed coloring through recursive list coloring. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1244–1259 (2020)
Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of 49th ACM Symposium on Theory of Computing (STOC 2017), pp. 784–797. ACM (2017)
Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: Proceedings of 24th ACM Symposium on Theory of Computing (STOC 1992), pp. 581–592. ACM (1992)
Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 270–277 (2016)
Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document})-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of 37th ACM Symposium on Principles of Distributed Computing (PODC 2018) (to appear) (2018)
Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479–488. ACM (2016)
Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 18:1–18:16 (2017)
Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of 53rd Symposium on Foundations of Computer Science (FOCS 2012), pp. 321–330 (2012)
Harris, D.G., Schneider, J., Su, H.-H.: Distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta }+ 1$$\end{document})-coloring in sublogarithmic rounds. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016) pp. 465–478. ACM (2016)
Maus, Y., Tonoyan, T.: Local conflict coloring revisited: linial for lists. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 16:1–16:18 (2020)
Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In: Proceedings of 26th ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 53–60, New York, NY, USA (2007). ACM
LubyMA simple parallel algorithm for the maximal independent set problemSIAM J. Comput.19861541036105386136910.1137/0215074
Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer (2013)
PanconesiASrinivasanAThe local nature of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-coloring and its algorithmic applicationsCombinatorica1995152255280133735710.1007/BF01200759
LovászLThree short proofs in graph theoryJ. Combin. Theory Ser. B197519326927139634410.1016/0095-8956(75)90089-1
BarenboimLElkinMPettieSSchneiderJThe locality of distributed symmetry breakingJ. ACM20166332012045354953010.1145/2903137
VizingVVextex coloring with given colorsMetody Diskretn. Anal.197629310
SchneiderJElkinMWattenhoferRSymmetry breaking depending on the chromatic number or the neighborhood growthTheoret. Comput. Sci.20135094050312345710.1016/j.tcs.2012.09.004
Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 625–634 (2016)
BarenboimLElkinMDistributed graph coloring: fundamentals and recent developmentsSynth. Lect. Distrib. Comput. Theory201341117110.2200/S00520ED1V01Y201307DCT011
Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms for planar graphs in the local model. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA’19, pp. 787–804 (2019)
LinialNLocality in distributed graph algorithmsSIAM J. Comput.1992211193201114882510.1137/0221015
A Panconesi (397_CR31) 1995; 15
L Barenboim (397_CR7) 2016; 63
397_CR21
397_CR22
397_CR23
397_CR24
397_CR20
397_CR18
397_CR19
L Lovász (397_CR26) 1975; 19
397_CR14
397_CR16
V Vizing (397_CR35) 1976; 29
397_CR17
N Alon (397_CR2) 1986; 7
N Linial (397_CR25) 1992; 21
397_CR1
397_CR3
J Schneider (397_CR34) 2013; 509
397_CR32
397_CR9
397_CR11
DW Cranston (397_CR15) 2015; 80
397_CR33
397_CR12
397_CR13
397_CR6
397_CR5
397_CR8
397_CR30
397_CR29
M Luby (397_CR27) 1986; 15
397_CR28
L Barenboim (397_CR4) 2013; 4
RL Brooks (397_CR10) 1941; 37
References_xml – reference: VizingVVextex coloring with given colorsMetody Diskretn. Anal.197629310
– reference: BarenboimLElkinMPettieSSchneiderJThe locality of distributed symmetry breakingJ. ACM20166332012045354953010.1145/2903137
– reference: Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
– reference: Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs. In: Proceedings of West Coast Conference on Combinatorics, Graph Theory and Computing, vol. 26, pp. 125–157. Congressus Numerantium (1979)
– reference: Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of 53rd Symposium on Foundations of Computer Science (FOCS 2012), pp. 321–330 (2012)
– reference: Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed coloring in sparse graphs with fewer colors. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, UK, 23–27, 2018, pp. 419–425 (2018)
– reference: BarenboimLElkinMDistributed graph coloring: fundamentals and recent developmentsSynth. Lect. Distrib. Comput. Theory201341117110.2200/S00520ED1V01Y201307DCT011
– reference: Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer (2013)
– reference: Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: Proceedings of 24th ACM Symposium on Theory of Computing (STOC 1992), pp. 581–592. ACM (1992)
– reference: Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In: Proceedings of 26th ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 53–60, New York, NY, USA (2007). ACM
– reference: LovászLThree short proofs in graph theoryJ. Combin. Theory Ser. B197519326927139634410.1016/0095-8956(75)90089-1
– reference: Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms for planar graphs in the local model. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA’19, pp. 787–804 (2019)
– reference: Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 270–277 (2016)
– reference: Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for Industrial and Applied Mathematics (2017)
– reference: Maus, Y., Tonoyan, T.: Local conflict coloring revisited: linial for lists. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 16:1–16:18 (2020)
– reference: AlonNBabaiLItaiAA fast and simple randomized parallel algorithm for the maximal independent set problemJ. Algorithms19867456758386679210.1016/0196-6774(86)90019-2
– reference: CranstonDWRabernLBrooks’ theorem and beyondJ. Graph Theory2015803199225340372610.1002/jgt.21847
– reference: Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 350–363 (2020)
– reference: Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 615–624. IEEE (2016)
– reference: Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 18:1–18:16 (2017)
– reference: LinialNLocality in distributed graph algorithmsSIAM J. Comput.1992211193201114882510.1137/0221015
– reference: Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 625–634 (2016)
– reference: LubyMA simple parallel algorithm for the maximal independent set problemSIAM J. Comput.19861541036105386136910.1137/0215074
– reference: Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document})-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of 37th ACM Symposium on Principles of Distributed Computing (PODC 2018) (to appear) (2018)
– reference: Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479–488. ACM (2016)
– reference: Kuhn, F.: Faster deterministic distributed coloring through recursive list coloring. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1244–1259 (2020)
– reference: BrooksRLOn colouring the nodes of a networkMath. Proc. Camb. Philos. Soc.19413721941971223610.1017/S030500410002168X
– reference: Harris, D.G., Schneider, J., Su, H.-H.: Distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta }+ 1$$\end{document})-coloring in sublogarithmic rounds. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016) pp. 465–478. ACM (2016)
– reference: Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of 49th ACM Symposium on Theory of Computing (STOC 2017), pp. 784–797. ACM (2017)
– reference: Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of 30th Symposium on Foundations of Computer Science (FOCS 1989), pp. 364–369 (1989)
– reference: Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta + 1$$\end{document})-coloring algorithm? In: Proceedings 50th ACM Symposium on Theory of Computing (STOC 2018) (to appear) (2018)
– reference: PanconesiASrinivasanAThe local nature of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-coloring and its algorithmic applicationsCombinatorica1995152255280133735710.1007/BF01200759
– reference: SchneiderJElkinMWattenhoferRSymmetry breaking depending on the chromatic number or the neighborhood growthTheoret. Comput. Sci.20135094050312345710.1016/j.tcs.2012.09.004
– reference: Bondy, J.A., Murty, U.: Graph Theory with Applications. Elsevier (1976)
– reference: Leonard Brooks, R.: On colouring the nodes of a network. In: Classic Papers in Combinatorics, pp. 118–121. Springer (2009)
– ident: 397_CR23
  doi: 10.1145/2897518.2897533
– volume: 19
  start-page: 269
  issue: 3
  year: 1975
  ident: 397_CR26
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(75)90089-1
– volume: 37
  start-page: 194
  issue: 2
  year: 1941
  ident: 397_CR10
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S030500410002168X
– ident: 397_CR6
  doi: 10.1109/FOCS.2012.60
– ident: 397_CR29
– ident: 397_CR5
  doi: 10.1145/3212734.3212769
– ident: 397_CR22
  doi: 10.1137/1.9781611974782.166
– ident: 397_CR30
  doi: 10.1145/129712.129769
– volume: 80
  start-page: 199
  issue: 3
  year: 2015
  ident: 397_CR15
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.21847
– ident: 397_CR12
  doi: 10.1109/FOCS.2016.72
– ident: 397_CR8
  doi: 10.1007/978-1-349-03521-2
– volume: 63
  start-page: 201
  issue: 3
  year: 2016
  ident: 397_CR7
  publication-title: J. ACM
  doi: 10.1145/2903137
– ident: 397_CR32
  doi: 10.1137/1.9780898719772
– ident: 397_CR33
  doi: 10.1145/3357713.3384298
– volume: 509
  start-page: 40
  year: 2013
  ident: 397_CR34
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2012.09.004
– ident: 397_CR3
  doi: 10.1109/SFCS.1989.63504
– ident: 397_CR19
  doi: 10.1145/1281100.1281111
– ident: 397_CR18
  doi: 10.1109/FOCS.2016.73
– volume: 29
  start-page: 3
  year: 1976
  ident: 397_CR35
  publication-title: Metody Diskretn. Anal.
– ident: 397_CR16
– ident: 397_CR9
  doi: 10.1145/2897518.2897570
– ident: 397_CR21
  doi: 10.1145/3055399.3055471
– ident: 397_CR13
  doi: 10.1145/3188745.3188964
– volume: 15
  start-page: 255
  issue: 2
  year: 1995
  ident: 397_CR31
  publication-title: Combinatorica
  doi: 10.1007/BF01200759
– volume: 7
  start-page: 567
  issue: 4
  year: 1986
  ident: 397_CR2
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(86)90019-2
– ident: 397_CR24
  doi: 10.1137/1.9781611975994.76
– volume: 21
  start-page: 193
  issue: 1
  year: 1992
  ident: 397_CR25
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221015
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  ident: 397_CR4
  publication-title: Synth. Lect. Distrib. Comput. Theory
  doi: 10.2200/S00520ED1V01Y201307DCT011
– ident: 397_CR11
  doi: 10.1007/978-0-8176-4842-8_7
– ident: 397_CR28
– ident: 397_CR20
  doi: 10.1137/1.9781611974331.ch20
– volume: 15
  start-page: 1036
  issue: 4
  year: 1986
  ident: 397_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215074
– ident: 397_CR14
  doi: 10.1137/1.9781611975482.49
– ident: 397_CR17
– ident: 397_CR1
  doi: 10.1145/3212734.3212740
SSID ssj0003112
Score 2.3274689
Snippet We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n...
We present a randomized distributed algorithm that computes a $$\Delta $$ Δ -coloring in any non-complete graph with maximum degree $$\Delta \ge 4$$ Δ ≥ 4 in...
We present a randomized distributed algorithm that computes a Δ-coloring in any non-complete graph with maximum degree Δ≥4 in O(logΔ)+2O(loglogn) rounds, as...
We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 239
SubjectTerms Algorithms
Coloring
Computer Communication Networks
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Lower bounds
Software Engineering/Programming and Operating Systems
Theory of Computation
SummonAdditionalLinks – databaseName: Career & Technical Education Database
  dbid: 7RQ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evBifeJqlRW8aXB3kya7JxGxeJCiotDbks0DBGlrH_4Sf5e_yUyabVGwF28Lm2yGybw2k5kP4CxTpioYZ8QkOSOMGkUkFupqYyoXkFrnoTxqyb3odvNer3gIB27jcK2ytoneUOuBwjPySxf6Uud9Rdq-Gr4TRI3C7GqA0FiFNeeoOcq5eHqcW2Ka-mwnItCTTIgkFM340jmfySR4QQHLUwVhPx3TItr8lSD1fqfT_C_FW7AZIs74eiYi27Bi-jvQrNEc4qDcuxDPzheMjjU200UcLPf89UmwrzXStgcvndvnmzsS8BOIogWfEFrlxkVHgsp2RWWSVsxyKt1-SK6zVLKKCUsT6aiUvMg01jPlimF_Gito2zK6D43-oG8OIBb4p2IVl4nlLFVMMqZTmevEZlxT244grZlXqtBcHDEu3sp5W2TP8NIxvPQML1kE5_M5w1lrjaWjWzWXy6Bm43LB4ghO56-dgmDWQ_bNYIpjitQZrYQXEVzUe7n4xN8rHi5f8Qg2Mi8-eBmwBY3JaGqOYV19TF7HoxMviN_G5t_j
  priority: 102
  providerName: ProQuest
Title Improved distributed Δ-coloring
URI https://link.springer.com/article/10.1007/s00446-021-00397-4
https://www.proquest.com/docview/2553615715
https://www.proquest.com/docview/2591225069
Volume 34
WOSCitedRecordID wos000672109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c5oMvzk-czlHBNw20TZq0jyobgjLm_GD4UtI2AUE62Yd_iX-Xf5O5rO1QVNCX0NJrEi653CWXux_AsZ-qJGKcEeWGjDCqUiIxUDdTKjEGqTYayqKWXIt-PxyNokERFDYtb7uXLkm7UlfBbtb3SPBKAQaUCsJq0DDqLkTAhuHtQ7X-Us_6OBF3nvhCuEWozPd1fFZHSxvzi1vUapte83_93ID1wrp0zhbTYRNWVL4FzRK5wSkEeRucxVmCypwME-ci5pV5fn8jmMMaW9uB-1737uKSFFgJJKURnxGahMpYQoLKIKHS9RKmOZWG95JnvidZwoSmrgwolzzyM4xdClOGuWi0oIFmdBfq-ThXe-AI3JXolEtXc-alTDKWeTLMXO3zjOqgBV7JsjgtEokjnsVzXKVAtiyIDQtiy4KYteCk-udlkUbjV-p2ORJxIVLT2Ox9qDG_hGc6cFR9NsKAHg6Zq_EcaSLPLFAuj1pwWo7OsoqfW9z_G_kBrPl2gPEiYBvqs8lcHcJq-jp7mk46UBPDGyxHYQca593-YGjergQx5SB47Njp-gFlJNsT
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV5cn7i6agU9abBtskl7EBEfKLsuHhS81TQPEGRX3VXxf_g7_Cn-JjPZdhcFvXnwVmibhHyTmUkmMx_AZqxMnjLOiAkTRhg1ikhM1NXG5M4htc5CedaSpmi1kuvr9GIE3stcGLxWWepEr6h1R-EZ-a5zfamzviKq798_EGSNwuhqSaHRF4uGeX1xW7bu3tmRw3crjk-OLw9PScEqQBRNeY_QPDHOZxBU1nMqwyhnllPpRim5jiPJciYsDaXrTfI01pjlkyiGVVusoHXLqGt3FMYZTQSuq4YgA81PIx9dRcZ7EgsRFkk6PlXPR04JXojAdFhB2FdDOPRuvwVkvZ07qfy3GZqB6cKjDg76S2AWRkx7DiolW0VQKK95CPrnJ0YHGosFI8-Xe_54I1i3G-diAa7-ZJyLMNbutM0SBAJ3YlZxGVrOIsUkYzqSiQ5tzDW19SpEJViZKoqnI4fHXTYo--wBzhzAmQc4Y1XYHvxz3y8d8uvXtRLVrFAj3WwIaRU2Bq-dAsCojmybzhN-k0ZOKYc8rcJOKTvDJn7ucfn3Htdh8vTyvJk1z1qNFZiKvejixccajPUen8wqTKjn3m33cc0vggBu_lqmPgFICTnE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSxxBEC7UiHjRaCKujziCOSWNM9M93TMHEdEsirLswYDkMunpBwTCrrqr4v_w1_gj_E1W9c7sYiDePHgbmH7R9XVVddcLYCc1riqEFMzFuWCCO8M0Bepa5ypUSD1KqFC15Ex1OvnFRdGdgscmFobcKhueGBi17Rt6I99F1Zej9FVJtutrt4juUXv_8opRBSmytDblNEYQOXX3d3h9G-ydHCGtv6Zp-8f54TGrKwwwwws5ZLzKHeoPiuus4jpOKuEl17hiLW2aaFEJ5XmscWYti9RSxE9uBGVw8YpnXnAcdxo-KLxjkjthN_s1lgI8CZZWBDwiUam4DtgJYXvBisrIOYJCYxUTL4XiRNP9xzgbZF578T3v1kdYqDXt6GB0NJZgyvWWYbGpYhHVTO0TRKN3FWcjS0mEqf4Xfj89MMrnTfvyGX6-yTpXYKbX77lViBTd0LyROvZSJEZoIWyicxv7VFrusxYkDeFKUydVp9oef8txOuhA7BKJXQZil6IF38Z9LkcpRV5tvdFQuKzZy6CckLcF2-PfyBjI2qN7rn9DbYoEmXUsixZ8b3A0GeL_M669PuMWzCGUyrOTzuk6zKcBxeQPuQEzw-sbtwmz5nb4Z3D9JZyHCH6_NaSeAXJXQug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+distributed+%CE%94+-coloring&rft.jtitle=Distributed+computing&rft.au=Ghaffari%2C+Mohsen&rft.au=Hirvonen%2C+Juho&rft.au=Kuhn%2C+Fabian&rft.au=Maus%2C+Yannic&rft.date=2021-08-01&rft.issn=0178-2770&rft.volume=34&rft.issue=4&rft.spage=239&rft_id=info:doi/10.1007%2Fs00446-021-00397-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2770&client=summon