Scheduling on a proportionate flowshop to minimise total late work
We study a scheduling problem to minimise total late work, i.e. each job is penalised according to the duration of its parts scheduled after its due-date. The machine setting is an m-machine proportionate flow shop. Two versions of the problem are studied: (i) the case that total late work refers to...
Uloženo v:
| Vydáno v: | International journal of production research Ročník 57; číslo 2; s. 531 - 543 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Taylor & Francis
17.01.2019
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0020-7543, 1366-588X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study a scheduling problem to minimise total late work, i.e. each job is penalised according to the duration of its parts scheduled after its due-date. The machine setting is an m-machine proportionate flow shop. Two versions of the problem are studied: (i) the case that total late work refers to the last operation of the job (i.e. the operation performed on the last machine of the flow shop); (ii) the case that total late work refers to all the operations (on all machines). Both versions are known to be NP-hard. We prove a crucial property of an optimal schedule, and consequently introduce efficient pseudo-polynomial dynamic programming algorithms for the two versions. The dynamic programming algorithms are tested numerically and proved to perform well on large size instances. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7543 1366-588X |
| DOI: | 10.1080/00207543.2018.1456693 |