Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system
•Fe and O codopants substantially accelerated the electron transfer of g-C3N4 for PMS activation.•Efficient BPA removal was achieved at high salinity and within wider pH ranges.•High-valent iron-oxo species and singlet oxygen were identified as two main reactive species.•Nonradical pathways were elu...
Uloženo v:
| Vydáno v: | Water research (Oxford) Ročník 191; s. 116799 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.03.2021
|
| Témata: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •Fe and O codopants substantially accelerated the electron transfer of g-C3N4 for PMS activation.•Efficient BPA removal was achieved at high salinity and within wider pH ranges.•High-valent iron-oxo species and singlet oxygen were identified as two main reactive species.•Nonradical pathways were elucidated based on experimental and theoretical analyses.
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) for wastewater treatment have recently attracted widespread interests. However, the degradation of organic pollutants via traditional radical-dominated pathway is severely limited by the side reactions between radicals and the co-existing inorganic anions, especially under high salinity conditions. Herein, an efficient Fe/O co-doped g-C3N4nanosheet catalyst was synthesized to dominantly activate PMS through a dual non-radical pathway with the singlet oxygen and high-valent iron-oxo species (Fe(V)=O). The rapid degradation of model pollutant bisphenol A (BPA) was achieved by dosing PMS (1 mM), catalyst (0.1 g/L) in a simulated high-salt wastewater (≥200 mM) of the developed Fe/O-doped g-C3N4+PMS system with a reaction rate constant of 1204-fold higher than that in g-C3N4+PMS system. The O and Fe co-dopants could reconfigurate the electronic structure of pristine g-C3N4 to produce more non-radical active species. The formed Fe(V)=O played a main role in the BPA degradation by promoting electron transfer from BPA molecule to the “metastable PMS/catalyst complex”, which was verified by electrochemical tests and density functional theory calculations. The auxiliary transient productions of ·OH+SO4·– species were also favorable for the pollutant degradation. Excellent reusability in a wide pH range confirmed the practical application prospects of the Fe/O-doped g-C3N4+PMS system. The successive addition of PMS with a low dosage into the system rich in pollutants was confirmed to favor the PMS utilization. Our work unveils the potential applications of a non-radical dominated process for the decontamination of organic pollutants in saline water. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0043-1354 1879-2448 1879-2448 |
| DOI: | 10.1016/j.watres.2020.116799 |