A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0

Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and its importance in production processes. It is normally assumed that each machine is typically operated by one worker at an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of production research Ročník 63; číslo 1; s. 119 - 147
Hlavní autori: Chang, Xiao, Jia, Xiaoliang, Ren, Jiahao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Taylor & Francis 02.01.2025
Taylor & Francis LLC
Predmet:
ISSN:0020-7543, 1366-588X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and its importance in production processes. It is normally assumed that each machine is typically operated by one worker at any time; therefore, shop-floor managers need to decide on the most efficient assignments for machines and workers. However, the processing time is variable and uncertain due to the fluctuating production environment caused by unsteady operating conditions of machines and learning effect of workers. Meanwhile, they also need to balance the worker workload while meeting production efficiency. Thus a dual resource-constrained FJSP with worker's learning effect and fuzzy processing time (F-DRCFJSP-WL) is investigated to simultaneously minimise makespan, total machine workloads and maximum worker workload. Subsequently, the reinforcement learning enhanced multi-objective memetic algorithm based on decomposition (RL-MOMA/D) is proposed for solving F-DRCFJSP-WL. For RL-MOMA/D, the Q-learning is incorporated into memetic algorithm to perform variable neighbourhood search and further strengthen the exploitation capability for the algorithm. Finally, comprehensive experiments on extensive test instances and a case study of aircraft overhaul shop-floor are conducted to demonstrate effectiveness and superiority of the proposed method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2024.2357740