Nonlinear multigrid algorithms for Bayesian optical diffusion tomography
Optical diffusion tomography is a technique for imaging a highly scattering medium using measurements of transmitted modulated light. Reconstruction of the spatial distribution of the optical properties of the medium from such data is a difficult nonlinear inverse problem. Bayesian approaches are ef...
Uložené v:
| Vydané v: | IEEE transactions on image processing Ročník 10; číslo 6; s. 909 - 922 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.06.2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1057-7149, 1941-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Optical diffusion tomography is a technique for imaging a highly scattering medium using measurements of transmitted modulated light. Reconstruction of the spatial distribution of the optical properties of the medium from such data is a difficult nonlinear inverse problem. Bayesian approaches are effective, but are computationally expensive, especially for three-dimensional (3-D) imaging. This paper presents a general nonlinear multigrid optimization technique suitable for reducing the computational burden in a range of nonquadratic optimization problems. This multigrid method is applied to compute the maximum a posteriori (MAP) estimate of the reconstructed image in the optical diffusion tomography problem. The proposed multigrid approach both dramatically reduces the required computation and improves the reconstructed image quality. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 |
| DOI: | 10.1109/83.923287 |