Applications, impacts, and management of biochar persistent free radicals: A review
Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received incre...
Saved in:
| Published in: | Environmental pollution (1987) Vol. 327; p. 121543 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
15.06.2023
|
| Subjects: | |
| ISSN: | 0269-7491, 1873-6424, 1873-6424 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.
[Display omitted]
•Formation mechanisms and types of biochar Persistent Free Radicals (PFRs) are outlined.•Environmental applications and risks of biochar PFRs are evaluated.•Environmental migration and transformation of biochar PFRs are summarized.•Management of biochar PFRs during both production and application phases are explored. |
|---|---|
| AbstractList | Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended. Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended. Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended. [Display omitted] •Formation mechanisms and types of biochar Persistent Free Radicals (PFRs) are outlined.•Environmental applications and risks of biochar PFRs are evaluated.•Environmental migration and transformation of biochar PFRs are summarized.•Management of biochar PFRs during both production and application phases are explored. |
| ArticleNumber | 121543 |
| Author | Zhang, Ruiling Zimmerman, Andrew R. Gao, Bin Zhang, Ruirui Wang, Hailong |
| Author_xml | – sequence: 1 givenname: Ruirui surname: Zhang fullname: Zhang, Ruirui organization: Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China – sequence: 2 givenname: Ruiling orcidid: 0000-0001-7210-5520 surname: Zhang fullname: Zhang, Ruiling email: ruilingzhang@tjut.edu.cn organization: Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China – sequence: 3 givenname: Andrew R. surname: Zimmerman fullname: Zimmerman, Andrew R. organization: Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA – sequence: 4 givenname: Hailong surname: Wang fullname: Wang, Hailong organization: School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China – sequence: 5 givenname: Bin surname: Gao fullname: Gao, Bin organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37019262$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9P3DAQxa0KVBbab1ChHHsgi__GMYdKK0QLEhIH6NlynEnrVWIH20vFt6-3gQuHcprR6PeeNO8dowMfPCD0heA1waQ5367BP81hXFNM2ZpQIjj7gFaklaxuOOUHaIVpo2rJFTlCxyltMcacMfYRHTGJiaINXaH7zTyPzprsgk9nlZtmY3NZjO-ryXjzCybwuQpD1blgf5tYzRCTS3l_HSJAFU1f9GO6qDZVhCcHfz6hw6Ec4PPLPEE_v189XF7Xt3c_bi43t7VlSuRaMCstFoTbTgroVS8E51bYngGTDJQk0DWSDawVIIlUUnai5S3t1CBU21h2gr4uvnMMjztIWU8uWRhH4yHskqYt45SUj8X7aLEnXLEWF_T0Bd11E_R6jm4y8Vm_ZlaAiwWwMaQUYdDW5X8B5mjcqAnW-4L0Vi8F6X1BeimoiPkb8av_O7JviwxKniXjqJN14C30LoLNug_u_wZ_AS8fqmo |
| CitedBy_id | crossref_primary_10_1002_cctc_202401042 crossref_primary_10_1007_s13399_024_06441_0 crossref_primary_10_3390_w16233387 crossref_primary_10_1007_s42773_025_00493_9 crossref_primary_10_1016_j_scitotenv_2024_176156 crossref_primary_10_3390_nano14131067 crossref_primary_10_3390_w17131960 crossref_primary_10_1016_j_envpol_2024_124499 crossref_primary_10_1016_j_watres_2024_121516 crossref_primary_10_3390_agronomy14091951 crossref_primary_10_1002_adma_202401249 crossref_primary_10_3390_agriculture15080905 crossref_primary_10_1016_j_watres_2025_123652 crossref_primary_10_1080_10643389_2024_2386086 crossref_primary_10_1155_2024_6355929 crossref_primary_10_1007_s42773_024_00405_3 crossref_primary_10_1016_j_seppur_2024_127457 crossref_primary_10_1007_s13201_025_02415_3 crossref_primary_10_1016_j_seppur_2024_128945 crossref_primary_10_1016_j_scitotenv_2024_173679 crossref_primary_10_3390_toxics12040245 crossref_primary_10_1039_D5CY00632E crossref_primary_10_1016_j_scitotenv_2024_174385 crossref_primary_10_1016_j_cej_2025_163605 crossref_primary_10_1016_j_jfca_2025_108027 crossref_primary_10_1016_j_jhazmat_2025_137523 crossref_primary_10_1016_j_jphotochem_2024_116247 crossref_primary_10_1021_acs_est_4c13603 crossref_primary_10_1016_j_cej_2023_148041 crossref_primary_10_1007_s42773_024_00412_4 crossref_primary_10_1007_s42773_024_00416_0 crossref_primary_10_1016_j_scitotenv_2023_168260 crossref_primary_10_1039_D5TA00439J crossref_primary_10_1016_j_apcatb_2024_124498 |
| Cites_doi | 10.1016/j.proci.2006.07.172 10.1016/j.jhazmat.2019.05.098 10.1038/nature06870 10.1021/tx010050x 10.1016/j.biortech.2012.05.042 10.1016/j.jhazmat.2020.123039 10.1016/j.pmatsci.2020.100654 10.1016/j.chemosphere.2014.12.058 10.1016/j.biortech.2014.11.032 10.1016/j.jes.2021.02.021 10.1073/pnas.1314968110 10.1021/acs.est.9b00756 10.1039/C9GC01843C 10.1021/acsami.7b03310 10.1016/j.cej.2020.126868 10.1021/es401770y 10.1007/s10646-014-1344-1 10.1016/j.watres.2019.05.008 10.1021/es305157w 10.1021/tx970159y 10.1016/j.envpol.2011.07.023 10.1016/j.ecss.2008.06.018 10.1016/j.biombioe.2012.01.033 10.1016/j.biortech.2018.09.027 10.1021/acs.est.7b00599 10.1021/es5061512 10.1016/j.seppur.2021.120136 10.1016/j.scitotenv.2021.146807 10.1016/j.scitotenv.2021.150339 10.1021/acs.est.8b00425 10.1021/es051878z 10.1152/ajpendo.00521.2015 10.1016/j.jece.2021.106267 10.1002/bbb.198 10.1016/S0082-0784(00)80679-7 10.1016/j.cej.2018.09.184 10.1016/j.jhazmat.2018.09.019 10.1016/j.cej.2018.11.124 10.1021/acs.est.8b00672 10.1021/la00060a030 10.1016/j.envpol.2017.06.101 10.1016/j.cej.2021.131666 10.1021/ef8010096 10.1016/j.chemosphere.2022.133737 10.1021/es300362k 10.1021/ef8004459 10.1016/j.seppur.2021.120315 10.1016/S0891-5849(01)00824-3 10.1089/ees.2008.0233 10.1021/tx400227s 10.1016/j.jhazmat.2020.122768 10.1016/j.apcatb.2017.05.036 10.1007/s10311-018-0757-0 10.1021/es4048126 10.1016/j.jhazmat.2021.126805 10.1016/j.envpol.2019.02.055 10.1016/j.jaap.2016.07.004 10.1016/j.envpol.2010.03.013 10.1016/j.jhazmat.2020.122783 10.1007/s11356-017-8653-x 10.1016/j.watres.2018.03.012 10.1016/j.scs.2019.101614 10.1016/j.scitotenv.2019.06.137 10.1016/j.scitotenv.2022.155421 10.1016/j.cej.2019.06.006 10.1016/j.scitotenv.2021.151059 10.1016/j.fuel.2006.12.013 10.1016/j.jhazmat.2021.127663 10.1016/j.cej.2018.12.098 10.1021/es201702q 10.1016/j.jhazmat.2020.124376 10.1016/j.scitotenv.2005.03.021 10.1016/j.jhazmat.2021.126611 10.1016/j.cej.2021.132313 10.1021/ef058018o 10.1016/j.chemosphere.2020.127747 10.1016/j.jclepro.2019.07.037 10.1039/C7RA01425B 10.1016/S0082-0784(00)80687-6 10.1016/j.jhazmat.2013.12.027 10.1016/j.scitotenv.2020.140388 10.1021/cr60249a001 10.1016/j.envint.2019.105172 10.1016/j.chemosphere.2019.124842 10.1016/j.jclepro.2021.129805 10.1016/j.jhazmat.2022.129514 10.1016/S0045-6535(01)00258-2 10.1016/j.envpol.2022.119546 10.1080/09506608.2021.1922047 10.1007/s11104-009-0050-x 10.1016/j.scitotenv.2016.06.092 10.1016/j.chemosphere.2020.126975 10.1039/C5EM00554J 10.1016/j.jaap.2022.105770 10.1016/j.biortech.2019.02.105 10.1021/es201309c 10.1016/j.cej.2019.123244 10.1021/es102841s 10.1016/j.cej.2018.04.175 10.1021/es404250a 10.1016/j.envpol.2018.08.093 10.1016/j.scitotenv.2021.147102 10.1016/j.agee.2011.08.015 10.1016/j.jaap.2022.105460 10.1021/acs.est.7b02740 10.5194/acp-11-5945-2011 10.1021/acs.est.5b04042 10.1016/j.biortech.2013.03.163 10.1016/j.scitotenv.2017.09.125 10.1016/j.cej.2017.08.013 10.1021/es2012947 10.1016/j.canlet.2017.03.039 10.1021/es800072c 10.1016/j.apcatb.2019.118160 10.1016/j.jclepro.2022.133666 10.1016/j.jhazmat.2020.122887 10.1071/SR10010 10.1016/j.scitotenv.2020.136575 10.1016/j.cej.2021.132287 10.1021/acs.est.7b04439 10.1021/acs.est.7b01929 10.1016/j.scitotenv.2020.143584 10.1186/1743-8977-6-11 10.1016/j.cej.2019.123091 10.1021/acs.est.7b02528 10.1021/es060742d 10.1021/es071708h 10.1016/j.cej.2017.01.038 10.1021/es301136d 10.1021/acs.est.8b01338 10.1016/j.cej.2019.05.204 10.1016/j.scitotenv.2018.06.232 |
| ContentType | Journal Article |
| Copyright | 2023 Copyright © 2023. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.envpol.2023.121543 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Environmental Sciences |
| EISSN | 1873-6424 |
| ExternalDocumentID | 37019262 10_1016_j_envpol_2023_121543 S0269749123005456 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- SEN SEW VH1 WUQ XOL ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-53c7c0514cb75ed9d5544c5cd3e373e971eb673f385e717977b58482b9f5986c3 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983248400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-7491 1873-6424 |
| IngestDate | Mon Sep 29 05:23:45 EDT 2025 Sun Nov 09 14:37:51 EST 2025 Wed Feb 19 02:23:41 EST 2025 Tue Nov 18 22:12:19 EST 2025 Sat Nov 29 07:21:10 EST 2025 Tue Dec 03 03:44:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Migration and transformation PRFs Environmental applications EPFRs Environmental risks |
| Language | English |
| License | Copyright © 2023. Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-53c7c0514cb75ed9d5544c5cd3e373e971eb673f385e717977b58482b9f5986c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7210-5520 |
| PMID | 37019262 |
| PQID | 2797149380 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2834213335 proquest_miscellaneous_2797149380 pubmed_primary_37019262 crossref_citationtrail_10_1016_j_envpol_2023_121543 crossref_primary_10_1016_j_envpol_2023_121543 elsevier_sciencedirect_doi_10_1016_j_envpol_2023_121543 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Environmental pollution (1987) |
| PublicationTitleAlternate | Environ Pollut |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yang, Wu, Liu, Chen, Ahmed, Zhu (bib118) 2018; 350 Qi, Ge, Zhang, Jiang, Wang, Akram, Xu (bib81) 2020; 399 Tian, Koshland, Yano, Yachandra, Yu, Lee, Lucas (bib97) 2009; 23 Stephenson, Ragauskas, Jaligama, Redd, Parvathareddy, Peloquin, Saravia, Han, Cormier, Bridges (bib93) 2016; 310 Zhang, He, Zhao, Zhang, Bildyukevich (bib126) 2023 Maskos, Khachatryan, Dellinger (bib74) 2005; 19 Jia, Zhao, Shi, Zhu, Gao, Zhu (bib45) 2019; 362 Zhao, Song, Cao, Sun, Chen, Meng (bib130) 2020; 400 Rangarajan, Farnood (bib87) 2022; 438 Wang, Xiao, Mo (bib109) 2019; 49 Huang, Zeng, Feng, Hu, Jiang, Tang, Su, Zhang, Zeng, Liu (bib39) 2008; 42 dela Cruz, Gehling, Lomnicki, Cook, Dellinger (bib17) 2011; 45 Vejerano, Lomnicki, Dellinger (bib101) 2012; 46 Saqib Rashid, Liu, Yousaf, Song, Ahmed, Rehman, Arif, Irshad, Cheema (bib91) 2022; 330 Bolan, Hoang, Beiyuan, Gupta, Hou, Karakoti, Joseph, Jung, Kim, Kirkham, Kua, Kumar, Kwon, Ok, Perera, Rinklebe, Shaheen, Sarkar, Sarmah, Singh, Singh, Tsang, Vikrant, Vithanage, Vinu, Wang, Wijesekara, Yan, Younis, Van Zwieten (bib9) 2021; 67 Chacon, Cayuela, Sanchez-Monedero (bib10) 2022; 307 Lelieveld, Butler, Crowley, Dillon, Fischer, Ganzeveld, Harder, Lawrence, Martinez, Taraborrelli, Williams (bib57) 2008; 452 Zhu, Zhao, Kalyanaraman, Frei (bib136) 2002; 32 Fuertes, Arbestain, Sevilla, Macia-Agullo, Fiol, Lopez, Smernik, Aitkenhead, Arce, Macias (bib29) 2010; 48 Paul, Stösser, Zehl, Zwirnmann, Vogt, Steinberg (bib77) 2006; 40 Heringa, DeCarlo, Chirico, Tritscher, Dommen, Weingartner, Richter, Wehrle, Prevot, Baltensperger (bib35) 2011; 11 Khachatryan, Adounkpe, Maskos, Dellinger (bib50) 2006; 40 Khachatryan, Xu, Wu, Pechagin, Asatryan (bib53) 2016; 121 Hu, Tong, Guo, Zhang, Jiao, Li, Zhang (bib37) 2022; 162 Dellinger, Lomnicki, Khachatryan, Maskos, Hall, Adounkpe, McFerrin, Truong (bib19) 2007; 31 Dong, Ma, Gress, Harris, Li (bib23) 2014; 267 Wang, Liao, Ifthikar, Shi, Chen, Chen (bib107) 2017; 7 Kelley, Hebert, Thibeaux, Orchard, Hasan, Cormier, Thevenot, Lomnicki, Varner, Dellinger, Latimer, Dugas (bib48) 2013; 26 Odinga, Waigi, Gudda, Wang, Yang, Hu, Li, Gao (bib76) 2020; 134 Liang, Niu, Guo, Niu, Yang, Liu, Tang, Feng (bib61) 2021; 406 Khachatryan, Vejerano, Lomnicki, Dellinger (bib52) 2011; 45 Qin, Cheng, Sun, Yan, Shen (bib83) 2016; 569–570 Zhou, Zeng, Zeng, Lai, Xiao, Liu, Huang, Qin, Liu, Li, Yi, Fu, Li, Wang (bib134) 2020; 383 Gao, Yao, Qian, Zhong, Zhang, Xue, Jia (bib31) 2018; 16 Fang, Zhu, Dionysiou, Gao, Zhou (bib28) 2015; 176 Yu, Tang, Pang, Zeng, Feng, Zou, Wang, Feng, Zhu, Ouyang, Tan (bib122) 2020; 260 Qin, Li, Gao, Zhang, Ok, An (bib84) 2018; 137 Wan, Sun, Tsang, Yu, Fan, Clark, Zhou, Cao, Gao, Ok (bib104) 2019; 21 Dellinger, Pryor, Cueto, Squadrito, Deutsch (bib20) 2000; 28 Chen, Zhang, Zhang, Zhang (bib11) 2018; 615 Li, Guo, Pan, Liao, Zhang, Yang, Min, Xing (bib58) 2016; 6 Ruan, Liu, Wang, Frost, Qian, Tsang (bib89) 2018; 270 Funke, Ziegler (bib30) 2010; 4 Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bib54) 2012; 41 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bib94) 2015; 125 Fang, Gao, Liu, Dionysiou, Wang, Zhou (bib24) 2014; 48 Jiang, Ling, Chen, Liu, Li, Jiang (bib46) 2019; 359 Zou, Yu, Tang, Ren, Pang, Zhang, Xie, Liu, Liu, Luo (bib138) 2020; 261 Li, Yang, Shen, Yang, Zhang, Deng, Zhang, Zeng, Hu (bib59) 2017; 24 Chen, Huang, Hou, Ai, Zhang (bib13) 2017; 51 Yang, Zhu, Gao, Jian, Wang, Sun (bib114) 2021; 781 Dellinger, D'Alessio, D'Anna, Ciajolo, Gullett, Henry, Keener, Lighty, Lomnicki, Lucas, Oberdorster, Pitea, Suk, Sarofim, Smith, Stoeger, Tolbert, Wyzga, Zimmermann (bib18) 2008; 25 Tao, Duan, Liu, Zhu, Si, Zhu, Oleszczuk, Pan (bib95) 2020; 715 Voncina, Solmajer (bib103) 2002; 46 Koivula, Eeva (bib56) 2010; 158 Xiang, Liu, Ye, Yang, Song, Qin, Shen, Tan, Zeng, Tan (bib111) 2021; 420 Ruan, Sun, Du, Tang, Liu, Zhang, Doherty, Frost, Qian, Tsang (bib90) 2019; 281 Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (bib99) 2010; 327 Fang, Liu, Wang, Dionysiou, Zhou (bib26) 2017; 214 Khachatryan, Dellinger (bib51) 2011; 45 Qiu, Zhang, Wang, Gao, Fan, Li, Hao, Wei, Zhong (bib86) 2021; 758 Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (bib36) 2019; 159 Jia, Zhao, Shi, Zhu, Wang, Sharma (bib43) 2018; 52 Lomnicki, Truong, Vejerano, Dellinger (bib69) 2008; 42 Yang, Liu, Zheng, Jin, Zhu, Zhao, Wu, Xu (bib117) 2017; 51 Terzian, Serpone, Draper, Fox, Pelizzetti (bib96) 1991; 7 Huang, Bi, Liu, Yi, Zhang, Yao (bib41) 2022; 168 Liu, Yao, Luo, Li, Li, Ye, Gong, Yang, Zhou (bib67) 2022; 836 Bastos, Prodana, Abrantes, Keizer, Soares, Loureiro (bib5) 2014; 23 Lu, Pellechia, Flora, Berge (bib70) 2013; 138 Jeffery, Verheijen, van der Velde, Bastos (bib42) 2011; 144 Chen, Wang, Yang, Xu, Xu, Cao (bib12) 2017; 230 Fang, Liu, Gao, Dionysiou, Zhou (bib25) 2015; 49 Vejerano, Rao, Khachatryan, Cormier, Lomnicki (bib102) 2018; 52 Dellinger, Pryor, Cueto, Squadrito, Hegde, Deutsch (bib21) 2001; 14 Zhong, Jiang, Zhao, Wang, Chen, Ren, Liu, Zhang, Tsang, Crittenden (bib132) 2019; 53 Zhang, Yang, Si, Duan, Quan (bib128) 2019; 248 Balakrishna, Lomnicki, McAvey, Cole, Dellinger, Cormier (bib3) 2009; 6 Hu, Zhang, Guo, Wang, Lu (bib38) 2022; 373 Richter, Benish, Mazyar, Green, Howard (bib88) 2000; 28 Xu, Xu, Tao, Yao, Tsang, Cao (bib112) 2019; 378 Khachatryan, Adounkpe, Dellinger (bib49) 2008; 22 Gehling, Khachatryan, Dellinger (bib32) 2014; 48 Liu, Dai, Jin, Dong, Peng, Wu, Liang, Pan, Xing (bib68) 2018; 52 Yuan, Wen, Dionysiou, Sharma, Ma (bib123) 2022; 429 Liu, Zhang, Yu, Jin, Zhou (bib65) 2020; 397 Deng, Luo, Huang, Zhang (bib22) 2020; 255 Luo, Pang, Wang, Li, Wang, Lei, Huang, Yang (bib71) 2021; 108 Zhu, Wang, Geng, Chen, Lin, Zhang (bib137) 2019; 374 Pflugmacher, Pietsch, Rieger, Steinberg (bib78) 2006; 357 Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bib47) 2010; 48 Yang, Yan, Chen, Lee, Zheng (bib115) 2007; 86 Luo, Yang, Pang, Wang, Li, Lei, Huang (bib72) 2019; 374 Pryor, Stone, Zang, Bermúdez (bib80) 1998; 11 Qin, Zhang, An (bib85) 2017; 9 Nwosu, Roy, dela Cruz, Dellinger, Cook (bib75) 2016; 18 Fang, Zhu, Dionysiou, Gao, Zhou (bib27) 2015; 176 Zhang, Wei, Metz, He, Alvarez, Long (bib124) 2022; 421 Zhang, Xu, He, Zhao, Kang, Lv (bib127) 2022; 294 Cruz, Cook, Lomnicki, Dellinger (bib16) 2012; 46 Liu, Guo, Wang, Si, Zhao, Luo, Ren (bib64) 2020; 398 Chu, Dong, Li, Jin, Xiao, Xiang, Dong, Hou (bib15) 2022; 285 Lieke, Zhang, Steinberg, Pan (bib63) 2018; 52 Bi, Huang, Jiang, He, Lin (bib7) 2022; 805 Lian, Xing (bib60) 2017; 51 Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (bib40) 2019; 361 Wang, Lv, Yang, Li, Fang, Lv, Han, Dong, Jiang, Jiang, Yang, Wang (bib106) 2017; 398 Zheng, Yang, Si, Zhu, Yang, Zhao, Shi (bib131) 2021; 407 Wang, Zhang, Wang, Jia, Shang, Tang, Sun (bib110) 2022; 424 Altwicker (bib2) 1967; 67 Blocquet, Schoemaecker, Amedro, Herbinet, Battin-Leclerc, Fittschen (bib8) 2013; 110 Zhong, Zhang, Wang, Chen, Jiang, Tsang, Zhao, Ren, Liu, Crittenden (bib133) 2018; 243 Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bib6) 2011; 159 Yan, Ma, Cao, Zhang, Zhou, Liu, Qian (bib113) 2018; 643 Zhou, Lai, Liu, Li, Qin, Liu, Yi, Fu, Li, Zhang, Yan, Wang, Chen, Zeng (bib135) 2022; 807 Wang, Huang, Sun, Yang, Sillanpää (bib105) 2021; 9 Liao, Pan, Li, Zhang, Xing (bib62) 2014; 48 Lyu, Zhang, Shen (bib73) 2020; 240 Jia, Zhao, Nulaji, Tao, Wang, Sharma, Wang (bib44) 2017; 51 Guo, Yan, Li, Yan, Song, Hou, Tong, Mu, Xu (bib33) 2021; 783 Zhang, Ding, Li, Yu, Ding, Kong, Ma (bib129) 2022; 283 Vejerano, Lomnicki, Dellinger (bib100) 2011; 45 Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bib1) 2012; 118 Han, Buss, Zheng, Song, Khalid Rafiq, Liu, Mašek, Li (bib34) 2022; 429 Song, Qin, Yu, Tang, Pang, Zhang, Wang, Deng (bib92) 2022; 424 Valavanidis, Vlachogianni, Triantafillaki, Dassenakis, Androutsos, Scoullos (bib98) 2008; 79 Pi, Li, Wang, Xu, Tao, Huang, Yao, Wu, He, Yang (bib79) 2019; 235 Baltrėnaitė-Gedienė, Lomnicki, Guo (bib4) 2022; 28 Yu, Feng, Tang, Pang, Zeng, Lu, Dong, Wang, Liu, Feng, Wang, Peng, Ye (bib121) 2020; 111 Kiruri, Dellinger, Lomnicki (bib55) 2013; 47 Yin, Guo, Du, Zhou, Zheng, Wu, Chang, Ren (bib119) 2017; 317 Zhang, Guo, Si, Yang, Zhou, Quan (bib125) 2019; 687 Wang, Shen, Wang, Du, Zhou, Liao, Wang, Chen (bib108) 2020; 740 Yang, Pan, Li, Liao, Zhang, Wu, Xing (bib116) 2016; 50 Chen, Duan, Zhang, Wang, Ren, Ho (bib14) 2020; 384 Liu, Liu, Yang, Li, Zheng (bib66) 2022; 427 Yin, Guo, Wang, Du, Wu, Chang, Ren (bib120) 2019; 357 Qin, Chen, Sun, Sun, Shen (bib82) 2017; 330 Dellinger (10.1016/j.envpol.2023.121543_bib20) 2000; 28 Ho (10.1016/j.envpol.2023.121543_bib36) 2019; 159 Bi (10.1016/j.envpol.2023.121543_bib7) 2022; 805 Khachatryan (10.1016/j.envpol.2023.121543_bib51) 2011; 45 Koivula (10.1016/j.envpol.2023.121543_bib56) 2010; 158 Joseph (10.1016/j.envpol.2023.121543_bib47) 2010; 48 Qin (10.1016/j.envpol.2023.121543_bib82) 2017; 330 Zhong (10.1016/j.envpol.2023.121543_bib133) 2018; 243 Liu (10.1016/j.envpol.2023.121543_bib65) 2020; 397 Pflugmacher (10.1016/j.envpol.2023.121543_bib78) 2006; 357 Jiang (10.1016/j.envpol.2023.121543_bib46) 2019; 359 Liao (10.1016/j.envpol.2023.121543_bib62) 2014; 48 Qin (10.1016/j.envpol.2023.121543_bib84) 2018; 137 Khachatryan (10.1016/j.envpol.2023.121543_bib53) 2016; 121 Odinga (10.1016/j.envpol.2023.121543_bib76) 2020; 134 Van Zwieten (10.1016/j.envpol.2023.121543_bib99) 2010; 327 Paul (10.1016/j.envpol.2023.121543_bib77) 2006; 40 Yuan (10.1016/j.envpol.2023.121543_bib123) 2022; 429 Liang (10.1016/j.envpol.2023.121543_bib61) 2021; 406 Han (10.1016/j.envpol.2023.121543_bib34) 2022; 429 Hu (10.1016/j.envpol.2023.121543_bib37) 2022; 162 Luo (10.1016/j.envpol.2023.121543_bib72) 2019; 374 Lieke (10.1016/j.envpol.2023.121543_bib63) 2018; 52 Xu (10.1016/j.envpol.2023.121543_bib112) 2019; 378 Chen (10.1016/j.envpol.2023.121543_bib12) 2017; 230 Zou (10.1016/j.envpol.2023.121543_bib138) 2020; 261 Yang (10.1016/j.envpol.2023.121543_bib117) 2017; 51 Wang (10.1016/j.envpol.2023.121543_bib107) 2017; 7 Jeffery (10.1016/j.envpol.2023.121543_bib42) 2011; 144 Jia (10.1016/j.envpol.2023.121543_bib43) 2018; 52 Gehling (10.1016/j.envpol.2023.121543_bib32) 2014; 48 Wang (10.1016/j.envpol.2023.121543_bib109) 2019; 49 Yin (10.1016/j.envpol.2023.121543_bib120) 2019; 357 Fang (10.1016/j.envpol.2023.121543_bib24) 2014; 48 Yang (10.1016/j.envpol.2023.121543_bib114) 2021; 781 Kelley (10.1016/j.envpol.2023.121543_bib48) 2013; 26 Dellinger (10.1016/j.envpol.2023.121543_bib19) 2007; 31 Maskos (10.1016/j.envpol.2023.121543_bib74) 2005; 19 Funke (10.1016/j.envpol.2023.121543_bib30) 2010; 4 Luo (10.1016/j.envpol.2023.121543_bib71) 2021; 108 Balakrishna (10.1016/j.envpol.2023.121543_bib3) 2009; 6 Zhu (10.1016/j.envpol.2023.121543_bib137) 2019; 374 Zhang (10.1016/j.envpol.2023.121543_bib125) 2019; 687 Yu (10.1016/j.envpol.2023.121543_bib121) 2020; 111 Khachatryan (10.1016/j.envpol.2023.121543_bib49) 2008; 22 Altwicker (10.1016/j.envpol.2023.121543_bib2) 1967; 67 Jia (10.1016/j.envpol.2023.121543_bib44) 2017; 51 Liu (10.1016/j.envpol.2023.121543_bib68) 2018; 52 Khachatryan (10.1016/j.envpol.2023.121543_bib52) 2011; 45 Qin (10.1016/j.envpol.2023.121543_bib83) 2016; 569–570 Lian (10.1016/j.envpol.2023.121543_bib60) 2017; 51 Lyu (10.1016/j.envpol.2023.121543_bib73) 2020; 240 Ruan (10.1016/j.envpol.2023.121543_bib90) 2019; 281 Zhang (10.1016/j.envpol.2023.121543_bib126) 2023 Fang (10.1016/j.envpol.2023.121543_bib26) 2017; 214 Blocquet (10.1016/j.envpol.2023.121543_bib8) 2013; 110 Valavanidis (10.1016/j.envpol.2023.121543_bib98) 2008; 79 Zhang (10.1016/j.envpol.2023.121543_bib127) 2022; 294 Dellinger (10.1016/j.envpol.2023.121543_bib18) 2008; 25 Zhang (10.1016/j.envpol.2023.121543_bib129) 2022; 283 Rangarajan (10.1016/j.envpol.2023.121543_bib87) 2022; 438 Ahmad (10.1016/j.envpol.2023.121543_bib1) 2012; 118 Yang (10.1016/j.envpol.2023.121543_bib115) 2007; 86 Lu (10.1016/j.envpol.2023.121543_bib70) 2013; 138 Qiu (10.1016/j.envpol.2023.121543_bib86) 2021; 758 Song (10.1016/j.envpol.2023.121543_bib92) 2022; 424 Hu (10.1016/j.envpol.2023.121543_bib38) 2022; 373 Ruan (10.1016/j.envpol.2023.121543_bib89) 2018; 270 Chu (10.1016/j.envpol.2023.121543_bib15) 2022; 285 Liu (10.1016/j.envpol.2023.121543_bib66) 2022; 427 Yang (10.1016/j.envpol.2023.121543_bib116) 2016; 50 Huang (10.1016/j.envpol.2023.121543_bib40) 2019; 361 Yin (10.1016/j.envpol.2023.121543_bib119) 2017; 317 Richter (10.1016/j.envpol.2023.121543_bib88) 2000; 28 Kinney (10.1016/j.envpol.2023.121543_bib54) 2012; 41 Wang (10.1016/j.envpol.2023.121543_bib108) 2020; 740 Li (10.1016/j.envpol.2023.121543_bib58) 2016; 6 Lelieveld (10.1016/j.envpol.2023.121543_bib57) 2008; 452 Tao (10.1016/j.envpol.2023.121543_bib95) 2020; 715 Fang (10.1016/j.envpol.2023.121543_bib27) 2015; 176 Pryor (10.1016/j.envpol.2023.121543_bib80) 1998; 11 Zheng (10.1016/j.envpol.2023.121543_bib131) 2021; 407 Bastos (10.1016/j.envpol.2023.121543_bib5) 2014; 23 Qi (10.1016/j.envpol.2023.121543_bib81) 2020; 399 Stephenson (10.1016/j.envpol.2023.121543_bib93) 2016; 310 Zhong (10.1016/j.envpol.2023.121543_bib132) 2019; 53 Huang (10.1016/j.envpol.2023.121543_bib41) 2022; 168 Zhou (10.1016/j.envpol.2023.121543_bib135) 2022; 807 Yang (10.1016/j.envpol.2023.121543_bib118) 2018; 350 Zhou (10.1016/j.envpol.2023.121543_bib134) 2020; 383 Saqib Rashid (10.1016/j.envpol.2023.121543_bib91) 2022; 330 Chacon (10.1016/j.envpol.2023.121543_bib10) 2022; 307 Liu (10.1016/j.envpol.2023.121543_bib64) 2020; 398 Dong (10.1016/j.envpol.2023.121543_bib23) 2014; 267 Wan (10.1016/j.envpol.2023.121543_bib104) 2019; 21 dela Cruz (10.1016/j.envpol.2023.121543_bib17) 2011; 45 Fang (10.1016/j.envpol.2023.121543_bib25) 2015; 49 Khachatryan (10.1016/j.envpol.2023.121543_bib50) 2006; 40 Heringa (10.1016/j.envpol.2023.121543_bib35) 2011; 11 Tan (10.1016/j.envpol.2023.121543_bib94) 2015; 125 Kiruri (10.1016/j.envpol.2023.121543_bib55) 2013; 47 Qin (10.1016/j.envpol.2023.121543_bib85) 2017; 9 Huang (10.1016/j.envpol.2023.121543_bib39) 2008; 42 Lomnicki (10.1016/j.envpol.2023.121543_bib69) 2008; 42 Zhang (10.1016/j.envpol.2023.121543_bib124) 2022; 421 Chen (10.1016/j.envpol.2023.121543_bib13) 2017; 51 Gao (10.1016/j.envpol.2023.121543_bib31) 2018; 16 Vejerano (10.1016/j.envpol.2023.121543_bib100) 2011; 45 Yu (10.1016/j.envpol.2023.121543_bib122) 2020; 260 Zhu (10.1016/j.envpol.2023.121543_bib136) 2002; 32 Zhang (10.1016/j.envpol.2023.121543_bib128) 2019; 248 Liu (10.1016/j.envpol.2023.121543_bib67) 2022; 836 Chen (10.1016/j.envpol.2023.121543_bib11) 2018; 615 Fang (10.1016/j.envpol.2023.121543_bib28) 2015; 176 Wang (10.1016/j.envpol.2023.121543_bib105) 2021; 9 Chen (10.1016/j.envpol.2023.121543_bib14) 2020; 384 Pi (10.1016/j.envpol.2023.121543_bib79) 2019; 235 Xiang (10.1016/j.envpol.2023.121543_bib111) 2021; 420 Fuertes (10.1016/j.envpol.2023.121543_bib29) 2010; 48 Vejerano (10.1016/j.envpol.2023.121543_bib102) 2018; 52 Beesley (10.1016/j.envpol.2023.121543_bib6) 2011; 159 Guo (10.1016/j.envpol.2023.121543_bib33) 2021; 783 Jia (10.1016/j.envpol.2023.121543_bib45) 2019; 362 Deng (10.1016/j.envpol.2023.121543_bib22) 2020; 255 Terzian (10.1016/j.envpol.2023.121543_bib96) 1991; 7 Tian (10.1016/j.envpol.2023.121543_bib97) 2009; 23 Voncina (10.1016/j.envpol.2023.121543_bib103) 2002; 46 Wang (10.1016/j.envpol.2023.121543_bib106) 2017; 398 Li (10.1016/j.envpol.2023.121543_bib59) 2017; 24 Yan (10.1016/j.envpol.2023.121543_bib113) 2018; 643 Bolan (10.1016/j.envpol.2023.121543_bib9) 2021; 67 Nwosu (10.1016/j.envpol.2023.121543_bib75) 2016; 18 Vejerano (10.1016/j.envpol.2023.121543_bib101) 2012; 46 Zhao (10.1016/j.envpol.2023.121543_bib130) 2020; 400 Baltrėnaitė-Gedienė (10.1016/j.envpol.2023.121543_bib4) 2022; 28 Wang (10.1016/j.envpol.2023.121543_bib110) 2022; 424 Cruz (10.1016/j.envpol.2023.121543_bib16) 2012; 46 Dellinger (10.1016/j.envpol.2023.121543_bib21) 2001; 14 |
| References_xml | – volume: 270 start-page: 223 year: 2018 end-page: 229 ident: bib89 article-title: Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin publication-title: Bioresour. Technol. – volume: 357 start-page: 589 year: 2019 end-page: 599 ident: bib120 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. – volume: 424 year: 2022 ident: bib110 article-title: Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms publication-title: J. Hazard Mater. – volume: 350 start-page: 484 year: 2018 end-page: 495 ident: bib118 article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite publication-title: Chem. Eng. J. – volume: 32 start-page: 465 year: 2002 end-page: 473 ident: bib136 article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study publication-title: Free Radic. Biol. Med. – volume: 429 year: 2022 ident: bib123 article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review publication-title: Chem. Eng. J. – volume: 46 start-page: 1279 year: 2002 end-page: 1286 ident: bib103 article-title: Thermolysis of 2,4,6-trichlorophenol chemisorbed on aluminium oxides as example of fly ash mediated surface catalysis reaction in PCDD/PCDF formation publication-title: Chemosphere – volume: 42 start-page: 4982 year: 2008 end-page: 4988 ident: bib69 article-title: Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter publication-title: Environ. Sci. Technol. – volume: 144 start-page: 175 year: 2011 end-page: 187 ident: bib42 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. – volume: 398 year: 2020 ident: bib64 article-title: Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: the pivotal roles of persistent free radicals and ecotoxicity assessment publication-title: J. Hazard Mater. – volume: 108 start-page: 201 year: 2021 end-page: 216 ident: bib71 article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PFRs) publication-title: J. Environ. Sci. – volume: 615 start-page: 1547 year: 2018 end-page: 1556 ident: bib11 article-title: Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures publication-title: Sci. Total Environ. – volume: 248 start-page: 429 year: 2019 end-page: 437 ident: bib128 article-title: The adverse effect of biochar to aquatic algae- the role of free radicals publication-title: Environ. Pollut. – volume: 111 year: 2020 ident: bib121 article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring publication-title: Prog. Mater. Sci. – volume: 51 start-page: 13517 year: 2017 end-page: 13532 ident: bib60 article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. – volume: 21 start-page: 4800 year: 2019 end-page: 4814 ident: bib104 article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes publication-title: Green Chem. – volume: 357 start-page: 169 year: 2006 end-page: 175 ident: bib78 article-title: Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum publication-title: Sci. Total Environ. – volume: 14 start-page: 1371 year: 2001 end-page: 1377 ident: bib21 article-title: Role of free radicals in the toxicity of airborne fine particulate matter publication-title: Chem. Res. Toxicol. – volume: 4 start-page: 160 year: 2010 end-page: 177 ident: bib30 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioprod. Biorefining – volume: 6 start-page: 11 year: 2009 ident: bib3 article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity publication-title: Part. Fibre Toxicol. – volume: 397 year: 2020 ident: bib65 article-title: Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar publication-title: J. Hazard Mater. – volume: 9 year: 2021 ident: bib105 article-title: A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism publication-title: J. Environ. Chem. Eng. – volume: 11 start-page: 5945 year: 2011 end-page: 5957 ident: bib35 article-title: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer publication-title: Atmos. Chem. Phys. – volume: 6 year: 2016 ident: bib58 article-title: Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals publication-title: Sci. Rep. – volume: 687 start-page: 348 year: 2019 end-page: 354 ident: bib125 article-title: Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria publication-title: Sci. Total Environ. – volume: 758 year: 2021 ident: bib86 article-title: Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: radical/non-radical mechanisms and fixed-bed reactor study publication-title: Sci. Total Environ. – volume: 134 year: 2020 ident: bib76 article-title: Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars publication-title: Environ. Int. – volume: 7 start-page: 18696 year: 2017 end-page: 18706 ident: bib107 article-title: One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation publication-title: RSC Adv. – volume: 569–570 start-page: 1 year: 2016 end-page: 8 ident: bib83 article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry publication-title: Sci. Total Environ. – volume: 45 start-page: 9232 year: 2011 end-page: 9239 ident: bib51 article-title: Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions? publication-title: Environ. Sci. Technol. – volume: 255 year: 2020 ident: bib22 article-title: Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals publication-title: Chemosphere – volume: 46 start-page: 9406 year: 2012 end-page: 9411 ident: bib101 article-title: formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface publication-title: Environ. Sci. Technol. – volume: 230 start-page: 540 year: 2017 end-page: 549 ident: bib12 article-title: Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions publication-title: Environ. Pollut. – volume: 51 start-page: 6000 year: 2017 end-page: 6008 ident: bib44 article-title: Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization publication-title: Environ. Sci. Technol. – volume: 23 start-page: 2523 year: 2009 end-page: 2526 ident: bib97 article-title: Carbon-centered free radicals in particulate matter emissions from wood and coal combustion publication-title: Energy Fuel. – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: bib99 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil – volume: 283 year: 2022 ident: bib129 article-title: Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: mechanism insight and performance assessment publication-title: Separ. Purif. Technol. – volume: 137 start-page: 130 year: 2018 end-page: 143 ident: bib84 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. – volume: 307 year: 2022 ident: bib10 article-title: Paracetamol degradation pathways in soil after biochar addition publication-title: Environ. Pollut. – volume: 67 start-page: 150 year: 2021 end-page: 200 ident: bib9 article-title: Multifunctional applications of biochar beyond carbon storage publication-title: Int. Mater. Rev. – volume: 45 start-page: 8559 year: 2011 end-page: 8566 ident: bib52 article-title: Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions publication-title: Environ. Sci. Technol. – volume: 23 start-page: 1784 year: 2014 end-page: 1793 ident: bib5 article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays publication-title: Ecotoxicology – volume: 420 year: 2021 ident: bib111 article-title: Potential hazards of biochar: the negative environmental impacts of biochar applications publication-title: J. Hazard Mater. – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: bib25 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 159 start-page: 77 year: 2019 end-page: 86 ident: bib36 article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation publication-title: Water Res. – volume: 427 year: 2022 ident: bib66 article-title: Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals publication-title: Chem. Eng. J. – volume: 407 year: 2021 ident: bib131 article-title: Application of biochars in the remediation of chromium contamination: fabrication, mechanisms, and interfering species publication-title: J. Hazard Mater. – volume: 110 start-page: 20014 year: 2013 end-page: 20017 ident: bib8 article-title: Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 1862 year: 2013 end-page: 1871 ident: bib48 article-title: Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species publication-title: Chem. Res. Toxicol. – volume: 45 start-page: 589 year: 2011 end-page: 594 ident: bib100 article-title: formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)(2)O-3/Silica surface publication-title: Environ. Sci. Technol. – volume: 398 start-page: 1 year: 2017 end-page: 11 ident: bib106 article-title: SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts publication-title: Cancer Lett. – volume: 330 start-page: 804 year: 2017 end-page: 812 ident: bib82 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. – volume: 52 start-page: 2468 year: 2018 end-page: 2481 ident: bib102 article-title: Environmentally persistent free radicals: insights on a new class of pollutants publication-title: Environ. Sci. Technol. – volume: 359 start-page: 572 year: 2019 end-page: 583 ident: bib46 article-title: High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors publication-title: Chem. Eng. J. – volume: 783 year: 2021 ident: bib33 article-title: Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes publication-title: Sci. Total Environ. – volume: 121 start-page: 75 year: 2016 end-page: 83 ident: bib53 article-title: Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol publication-title: J. Anal. Appl. Pyrol. – volume: 48 start-page: 4266 year: 2014 end-page: 4272 ident: bib32 article-title: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5 publication-title: Environ. Sci. Technol. – volume: 807 year: 2022 ident: bib135 article-title: Activation of persulfate by swine bone derived biochar: insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways publication-title: Sci. Total Environ. – volume: 51 start-page: 7936 year: 2017 end-page: 7944 ident: bib117 article-title: Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere publication-title: Environ. Sci. Technol. – volume: 52 start-page: 7981 year: 2018 end-page: 7987 ident: bib63 article-title: Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans publication-title: Environ. Sci. Technol. – volume: 384 year: 2020 ident: bib14 article-title: Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection publication-title: Chem. Eng. J. – volume: 40 start-page: 5071 year: 2006 end-page: 5076 ident: bib50 article-title: Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol publication-title: Environ. Sci. Technol. – volume: 781 year: 2021 ident: bib114 article-title: Effects of biochar-dissolved organic matter on the photodegradation of sulfamethoxazole and chloramphenicol in biochar solutions as revealed by oxygen reduction performances and free radicals publication-title: Sci. Total Environ. – volume: 28 year: 2022 ident: bib4 article-title: Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil publication-title: Environ. Technol. Innovat. – volume: 19 start-page: 2466 year: 2005 end-page: 2473 ident: bib74 article-title: Precursors of radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals publication-title: Energy Fuel. – volume: 7 start-page: 3081 year: 1991 end-page: 3089 ident: bib96 article-title: Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals publication-title: Langmuir – volume: 18 start-page: 42 year: 2016 end-page: 50 ident: bib75 article-title: Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay publication-title: Environ. Sci.-Process. impact – volume: 47 start-page: 4220 year: 2013 end-page: 4226 ident: bib55 article-title: Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering publication-title: Environ. Sci. Technol. – volume: 50 start-page: 694 year: 2016 end-page: 700 ident: bib116 article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals publication-title: Environ. Sci. Technol. – volume: 400 year: 2020 ident: bib130 article-title: The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil publication-title: J. Hazard Mater. – volume: 383 year: 2020 ident: bib134 article-title: Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media publication-title: Chem. Eng. J. – volume: 176 start-page: 210 year: 2015 end-page: 217 ident: bib27 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. – volume: 40 start-page: 5897 year: 2006 end-page: 5903 ident: bib77 article-title: Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation publication-title: Environ. Sci. Technol. – volume: 805 year: 2022 ident: bib7 article-title: Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose publication-title: Sci. Total Environ. – volume: 41 start-page: 34 year: 2012 end-page: 43 ident: bib54 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy – volume: 53 start-page: 9034 year: 2019 end-page: 9044 ident: bib132 article-title: pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties publication-title: Environ. Sci. Technol. – volume: 24 start-page: 10267 year: 2017 end-page: 10278 ident: bib59 article-title: Mitigating biochar phytotoxicity via lanthanum (La) participation in pyrolysis publication-title: Environ. Sci. Pollut. Res. Int. – volume: 267 start-page: 62 year: 2014 end-page: 70 ident: bib23 article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar publication-title: J. Hazard Mater. – volume: 374 start-page: 1253 year: 2019 end-page: 1263 ident: bib137 article-title: Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism publication-title: Chem. Eng. J. – volume: 79 start-page: 733 year: 2008 end-page: 739 ident: bib98 article-title: Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuarine publication-title: Coastal Shelf Sci. – volume: 243 start-page: 1302 year: 2018 end-page: 1309 ident: bib133 article-title: Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe(3)o(4) and persistent free radicals publication-title: Environ. Pollut. – volume: 281 start-page: 457 year: 2019 end-page: 468 ident: bib90 article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review publication-title: Bioresour. Technol. – volume: 16 start-page: 1463 year: 2018 end-page: 1468 ident: bib31 article-title: Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw publication-title: Environ. Chem. Lett. – volume: 836 year: 2022 ident: bib67 article-title: Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: Sci. Total Environ. – volume: 42 start-page: 4946 year: 2008 end-page: 4951 ident: bib39 article-title: Degradation of lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and the reduction of lead toxicity publication-title: Environ. Sci. Technol. – volume: 158 start-page: 2359 year: 2010 end-page: 2370 ident: bib56 article-title: Metal-related oxidative stress in birds publication-title: Environ. Pollut. – volume: 48 start-page: 618 year: 2010 end-page: 626 ident: bib29 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Aust. J. Soil Res. – volume: 715 year: 2020 ident: bib95 article-title: Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics publication-title: Sci. Total Environ. – year: 2023 ident: bib126 article-title: Effect of Aged Biochar after Microbial Fermentation on Antibiotics Removal: Key Roles of Microplastics and Environmentally Persistent Free Radicals – volume: 406 year: 2021 ident: bib61 article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride publication-title: Chem. Eng. J. – volume: 294 year: 2022 ident: bib127 article-title: Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: key role of environmentally persistent free radicals publication-title: Chemosphere – volume: 22 start-page: 3810 year: 2008 end-page: 3813 ident: bib49 article-title: Radicals from the gas-phase pyrolysis of hydroquinone: 2. Identification of alkyl peroxy radicals publication-title: Energy Fuel. – volume: 285 year: 2022 ident: bib15 article-title: Enhanced activation of sulfite by a mixture of zero-valent Fe-Mn bimetallic nanoparticles and biochar for degradation of sulfamethazine in water publication-title: Separ. Purif. Technol. – volume: 261 year: 2020 ident: bib138 article-title: Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process publication-title: Chemosphere – volume: 28 start-page: 2609 year: 2000 end-page: 2618 ident: bib88 article-title: Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame publication-title: Proc. Combust. Inst. – volume: 46 start-page: 5971 year: 2012 end-page: 5978 ident: bib16 article-title: Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals publication-title: Environ. Sci. Technol. – volume: 168 year: 2022 ident: bib41 article-title: Formation and regulation of environmentally persistent free radicals in biochar and removal of diethyl-phthalate in water publication-title: J. Anal. Appl. Pyrol. – volume: 52 start-page: 5725 year: 2018 end-page: 5733 ident: bib43 article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties publication-title: Environ. Sci. Technol. – volume: 643 start-page: 486 year: 2018 end-page: 495 ident: bib113 article-title: Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods publication-title: Sci. Total Environ. – volume: 67 start-page: 475 year: 1967 end-page: 531 ident: bib2 article-title: The chemistry of stable phenoxy radicals publication-title: Chem. Rev. – volume: 162 year: 2022 ident: bib37 article-title: Effect of controlled temperature and biomass addition on the formed environmental persistent free radicals (EPFRs) in sewage sludge-based biochar from pyrolysis treatment publication-title: J. Anal. Appl. Pyrol. – volume: 740 year: 2020 ident: bib108 article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: singlet oxygen dominated mechanism and toxicity prediction publication-title: Sci. Total Environ. – volume: 378 year: 2019 ident: bib112 article-title: Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction publication-title: J. Hazard Mater. – volume: 118 start-page: 536 year: 2012 end-page: 544 ident: bib1 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. – volume: 310 start-page: E1003 year: 2016 end-page: E1015 ident: bib93 article-title: Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 235 start-page: 1103 year: 2019 end-page: 1115 ident: bib79 article-title: Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway publication-title: J. Clean. Prod. – volume: 452 start-page: 737 year: 2008 end-page: 740 ident: bib57 article-title: Atmospheric oxidation capacity sustained by a tropical forest publication-title: Nature – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: bib115 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 374 start-page: 520 year: 2019 end-page: 530 ident: bib72 article-title: Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin publication-title: Chem. Eng. J. – volume: 11 start-page: 441 year: 1998 end-page: 448 ident: bib80 article-title: Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage publication-title: Chem. Res. Toxicol. – volume: 9 start-page: 17115 year: 2017 end-page: 17124 ident: bib85 article-title: Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III) publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: bib47 article-title: An investigation into the reactions of biochar in soil. Australian Journal of Soil publication-title: Research – volume: 138 start-page: 180 year: 2013 end-page: 190 ident: bib70 article-title: Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose publication-title: Bioresour. Technol. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: bib94 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 362 start-page: 92 year: 2019 end-page: 98 ident: bib45 article-title: Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface publication-title: J. Hazard Mater. – volume: 28 start-page: 2675 year: 2000 end-page: 2681 ident: bib20 article-title: The role of combustion-generated radicals in the toxicity of PM2.5 publication-title: Proc. Combust. Inst. – volume: 421 year: 2022 ident: bib124 article-title: Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment publication-title: J. Hazard Mater. – volume: 399 year: 2020 ident: bib81 article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation publication-title: J. Hazard Mater. – volume: 438 year: 2022 ident: bib87 article-title: Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts – a mechanistic study publication-title: J. Hazard Mater. – volume: 48 start-page: 8581 year: 2014 end-page: 8587 ident: bib62 article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings publication-title: Environ. Sci. Technol. – volume: 240 year: 2020 ident: bib73 article-title: Application of biochar and its composites in catalysis publication-title: Chemosphere – volume: 424 year: 2022 ident: bib92 article-title: Tailoring biochar for persulfate-based environmental catalysis: impact of biomass feedstocks publication-title: J. Hazard Mater. – volume: 49 year: 2019 ident: bib109 article-title: Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy publication-title: Sustain. Cities Soc. – volume: 51 start-page: 11278 year: 2017 end-page: 11287 ident: bib13 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. – volume: 373 year: 2022 ident: bib38 article-title: Characterization into environmentally persistent free radicals formed in incineration fly ash and pyrolysis biochar of sewage sludge and biomass publication-title: J. Clean. Prod. – volume: 260 year: 2020 ident: bib122 article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors publication-title: Appl. Catal. B Environ. – volume: 48 start-page: 1902 year: 2014 end-page: 1910 ident: bib24 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: bib6 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 45 start-page: 6356 year: 2011 end-page: 6365 ident: bib17 article-title: Detection of environmentally persistent free radicals at a superfund wood treating site publication-title: Environ. Sci. Technol. – volume: 330 year: 2022 ident: bib91 article-title: Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: role of free radical production in maize (Zea mays L.) publication-title: J. Clean. Prod. – volume: 31 start-page: 521 year: 2007 end-page: 528 ident: bib19 article-title: Formation and stabilization of persistent free radicals publication-title: Proc. Combust. Inst. – volume: 176 start-page: 210 year: 2015 end-page: 217 ident: bib28 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. – volume: 214 start-page: 34 year: 2017 end-page: 45 ident: bib26 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B Environ. – volume: 361 start-page: 353 year: 2019 end-page: 363 ident: bib40 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. – volume: 317 start-page: 632 year: 2017 end-page: 639 ident: bib119 article-title: Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: performances and mechanisms publication-title: Chem. Eng. J. – volume: 25 start-page: 1107 year: 2008 end-page: 1114 ident: bib18 article-title: Report: combustion byproducts and their health effects: summary of the 10th international congress publication-title: Environ. Eng. Sci. – volume: 429 year: 2022 ident: bib34 article-title: Contaminants in biochar and suggested mitigation measures – a review publication-title: Chem. Eng. J. – volume: 52 start-page: 12740 year: 2018 end-page: 12747 ident: bib68 article-title: Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? publication-title: Environ. Sci. Technol. – volume: 31 start-page: 521 issue: 1 year: 2007 ident: 10.1016/j.envpol.2023.121543_bib19 article-title: Formation and stabilization of persistent free radicals publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.172 – volume: 378 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib112 article-title: Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2019.05.098 – volume: 452 start-page: 737 issue: 7188 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib57 article-title: Atmospheric oxidation capacity sustained by a tropical forest publication-title: Nature doi: 10.1038/nature06870 – volume: 14 start-page: 1371 issue: 10 year: 2001 ident: 10.1016/j.envpol.2023.121543_bib21 article-title: Role of free radicals in the toxicity of airborne fine particulate matter publication-title: Chem. Res. Toxicol. doi: 10.1021/tx010050x – volume: 118 start-page: 536 year: 2012 ident: 10.1016/j.envpol.2023.121543_bib1 article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.042 – volume: 399 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib81 article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123039 – volume: 111 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib121 article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100654 – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.envpol.2023.121543_bib94 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 176 start-page: 210 year: 2015 ident: 10.1016/j.envpol.2023.121543_bib28 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.032 – volume: 108 start-page: 201 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib71 article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PFRs) publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2021.02.021 – volume: 110 start-page: 20014 issue: 50 year: 2013 ident: 10.1016/j.envpol.2023.121543_bib8 article-title: Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1314968110 – volume: 53 start-page: 9034 issue: 15 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib132 article-title: pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b00756 – volume: 21 start-page: 4800 issue: 17 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib104 article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes publication-title: Green Chem. doi: 10.1039/C9GC01843C – volume: 9 start-page: 17115 issue: 20 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib85 article-title: Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03310 – volume: 406 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib61 article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126868 – volume: 48 start-page: 4266 issue: 8 year: 2014 ident: 10.1016/j.envpol.2023.121543_bib32 article-title: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5 publication-title: Environ. Sci. Technol. doi: 10.1021/es401770y – volume: 23 start-page: 1784 issue: 9 year: 2014 ident: 10.1016/j.envpol.2023.121543_bib5 article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays publication-title: Ecotoxicology doi: 10.1007/s10646-014-1344-1 – volume: 159 start-page: 77 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib36 article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation publication-title: Water Res. doi: 10.1016/j.watres.2019.05.008 – volume: 47 start-page: 4220 issue: 9 year: 2013 ident: 10.1016/j.envpol.2023.121543_bib55 article-title: Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering publication-title: Environ. Sci. Technol. doi: 10.1021/es305157w – volume: 176 start-page: 210 year: 2015 ident: 10.1016/j.envpol.2023.121543_bib27 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.032 – volume: 11 start-page: 441 issue: 5 year: 1998 ident: 10.1016/j.envpol.2023.121543_bib80 article-title: Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage publication-title: Chem. Res. Toxicol. doi: 10.1021/tx970159y – volume: 159 start-page: 3269 issue: 12 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib6 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 79 start-page: 733 issue: 4 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib98 article-title: Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuarine publication-title: Coastal Shelf Sci. doi: 10.1016/j.ecss.2008.06.018 – volume: 41 start-page: 34 year: 2012 ident: 10.1016/j.envpol.2023.121543_bib54 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.033 – volume: 270 start-page: 223 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib89 article-title: Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.027 – volume: 51 start-page: 6000 issue: 11 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib44 article-title: Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00599 – volume: 49 start-page: 5645 issue: 9 year: 2015 ident: 10.1016/j.envpol.2023.121543_bib25 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 283 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib129 article-title: Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: mechanism insight and performance assessment publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.120136 – volume: 781 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib114 article-title: Effects of biochar-dissolved organic matter on the photodegradation of sulfamethoxazole and chloramphenicol in biochar solutions as revealed by oxygen reduction performances and free radicals publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146807 – volume: 805 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib7 article-title: Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150339 – volume: 52 start-page: 5725 issue: 10 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib43 article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00425 – volume: 40 start-page: 5071 issue: 16 year: 2006 ident: 10.1016/j.envpol.2023.121543_bib50 article-title: Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol publication-title: Environ. Sci. Technol. doi: 10.1021/es051878z – volume: 310 start-page: E1003 issue: 11 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib93 article-title: Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00521.2015 – volume: 9 issue: 5 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib105 article-title: A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106267 – volume: 4 start-page: 160 issue: 2 year: 2010 ident: 10.1016/j.envpol.2023.121543_bib30 article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioprod. Biorefining doi: 10.1002/bbb.198 – volume: 28 start-page: 2609 issue: 2 year: 2000 ident: 10.1016/j.envpol.2023.121543_bib88 article-title: Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80679-7 – volume: 357 start-page: 589 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib120 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.184 – volume: 362 start-page: 92 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib45 article-title: Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.09.019 – volume: 359 start-page: 572 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib46 article-title: High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.124 – volume: 52 start-page: 12740 issue: 21 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib68 article-title: Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00672 – volume: 7 start-page: 3081 issue: 12 year: 1991 ident: 10.1016/j.envpol.2023.121543_bib96 article-title: Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals publication-title: Langmuir doi: 10.1021/la00060a030 – volume: 230 start-page: 540 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib12 article-title: Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.06.101 – volume: 427 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib66 article-title: Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131666 – volume: 23 start-page: 2523 issue: 5–6 year: 2009 ident: 10.1016/j.envpol.2023.121543_bib97 article-title: Carbon-centered free radicals in particulate matter emissions from wood and coal combustion publication-title: Energy Fuel. doi: 10.1021/ef8010096 – volume: 294 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib127 article-title: Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: key role of environmentally persistent free radicals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133737 – volume: 46 start-page: 5971 issue: 11 year: 2012 ident: 10.1016/j.envpol.2023.121543_bib16 article-title: Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals publication-title: Environ. Sci. Technol. doi: 10.1021/es300362k – volume: 22 start-page: 3810 issue: 6 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib49 article-title: Radicals from the gas-phase pyrolysis of hydroquinone: 2. Identification of alkyl peroxy radicals publication-title: Energy Fuel. doi: 10.1021/ef8004459 – volume: 285 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib15 article-title: Enhanced activation of sulfite by a mixture of zero-valent Fe-Mn bimetallic nanoparticles and biochar for degradation of sulfamethazine in water publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.120315 – volume: 32 start-page: 465 issue: 5 year: 2002 ident: 10.1016/j.envpol.2023.121543_bib136 article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00824-3 – volume: 25 start-page: 1107 issue: 8 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib18 article-title: Report: combustion byproducts and their health effects: summary of the 10th international congress publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2008.0233 – volume: 26 start-page: 1862 issue: 12 year: 2013 ident: 10.1016/j.envpol.2023.121543_bib48 article-title: Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species publication-title: Chem. Res. Toxicol. doi: 10.1021/tx400227s – volume: 398 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib64 article-title: Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: the pivotal roles of persistent free radicals and ecotoxicity assessment publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122768 – volume: 214 start-page: 34 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib26 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.036 – volume: 16 start-page: 1463 issue: 4 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib31 article-title: Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0757-0 – volume: 48 start-page: 1902 issue: 3 year: 2014 ident: 10.1016/j.envpol.2023.121543_bib24 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es4048126 – volume: 421 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib124 article-title: Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126805 – volume: 248 start-page: 429 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib128 article-title: The adverse effect of biochar to aquatic algae- the role of free radicals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.055 – volume: 121 start-page: 75 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib53 article-title: Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2016.07.004 – volume: 158 start-page: 2359 issue: 7 year: 2010 ident: 10.1016/j.envpol.2023.121543_bib56 article-title: Metal-related oxidative stress in birds publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.03.013 – volume: 397 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib65 article-title: Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122783 – volume: 24 start-page: 10267 issue: 11 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib59 article-title: Mitigating biochar phytotoxicity via lanthanum (La) participation in pyrolysis publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-017-8653-x – volume: 137 start-page: 130 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib84 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.012 – volume: 49 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib109 article-title: Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101614 – volume: 687 start-page: 348 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib125 article-title: Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.137 – year: 2023 ident: 10.1016/j.envpol.2023.121543_bib126 – volume: 836 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib67 article-title: Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155421 – volume: 374 start-page: 1253 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib137 article-title: Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.006 – volume: 807 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib135 article-title: Activation of persulfate by swine bone derived biochar: insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151059 – volume: 86 start-page: 1781 issue: 12 year: 2007 ident: 10.1016/j.envpol.2023.121543_bib115 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 424 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib92 article-title: Tailoring biochar for persulfate-based environmental catalysis: impact of biomass feedstocks publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.127663 – volume: 361 start-page: 353 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib40 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.098 – volume: 45 start-page: 9232 issue: 21 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib51 article-title: Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions? publication-title: Environ. Sci. Technol. doi: 10.1021/es201702q – volume: 6 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib58 article-title: Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals publication-title: Sci. Rep. – volume: 407 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib131 article-title: Application of biochars in the remediation of chromium contamination: fabrication, mechanisms, and interfering species publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.124376 – volume: 357 start-page: 169 issue: 1 year: 2006 ident: 10.1016/j.envpol.2023.121543_bib78 article-title: Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.03.021 – volume: 420 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib111 article-title: Potential hazards of biochar: the negative environmental impacts of biochar applications publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126611 – volume: 429 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib123 article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132313 – volume: 19 start-page: 2466 issue: 6 year: 2005 ident: 10.1016/j.envpol.2023.121543_bib74 article-title: Precursors of radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals publication-title: Energy Fuel. doi: 10.1021/ef058018o – volume: 261 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib138 article-title: Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127747 – volume: 235 start-page: 1103 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib79 article-title: Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.07.037 – volume: 7 start-page: 18696 issue: 30 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib107 article-title: One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation publication-title: RSC Adv. doi: 10.1039/C7RA01425B – volume: 28 start-page: 2675 issue: 2 year: 2000 ident: 10.1016/j.envpol.2023.121543_bib20 article-title: The role of combustion-generated radicals in the toxicity of PM2.5 publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80687-6 – volume: 267 start-page: 62 year: 2014 ident: 10.1016/j.envpol.2023.121543_bib23 article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.12.027 – volume: 740 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib108 article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: singlet oxygen dominated mechanism and toxicity prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140388 – volume: 67 start-page: 475 issue: 5 year: 1967 ident: 10.1016/j.envpol.2023.121543_bib2 article-title: The chemistry of stable phenoxy radicals publication-title: Chem. Rev. doi: 10.1021/cr60249a001 – volume: 134 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib76 article-title: Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105172 – volume: 240 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib73 article-title: Application of biochar and its composites in catalysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124842 – volume: 330 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib91 article-title: Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: role of free radical production in maize (Zea mays L.) publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129805 – volume: 438 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib87 article-title: Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts – a mechanistic study publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2022.129514 – volume: 46 start-page: 1279 issue: 9–10 year: 2002 ident: 10.1016/j.envpol.2023.121543_bib103 article-title: Thermolysis of 2,4,6-trichlorophenol chemisorbed on aluminium oxides as example of fly ash mediated surface catalysis reaction in PCDD/PCDF formation publication-title: Chemosphere doi: 10.1016/S0045-6535(01)00258-2 – volume: 424 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib110 article-title: Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms publication-title: J. Hazard Mater. – volume: 307 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib10 article-title: Paracetamol degradation pathways in soil after biochar addition publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119546 – volume: 28 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib4 article-title: Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil publication-title: Environ. Technol. Innovat. – volume: 67 start-page: 150 issue: 2 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib9 article-title: Multifunctional applications of biochar beyond carbon storage publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2021.1922047 – volume: 327 start-page: 235 issue: 1–2 year: 2010 ident: 10.1016/j.envpol.2023.121543_bib99 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil doi: 10.1007/s11104-009-0050-x – volume: 569–570 start-page: 1 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib83 article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.092 – volume: 255 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib22 article-title: Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126975 – volume: 18 start-page: 42 issue: 1 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib75 article-title: Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay publication-title: Environ. Sci.-Process. impact doi: 10.1039/C5EM00554J – volume: 168 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib41 article-title: Formation and regulation of environmentally persistent free radicals in biochar and removal of diethyl-phthalate in water publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105770 – volume: 281 start-page: 457 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib90 article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.02.105 – volume: 45 start-page: 8559 issue: 19 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib52 article-title: Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions publication-title: Environ. Sci. Technol. doi: 10.1021/es201309c – volume: 384 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib14 article-title: Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123244 – volume: 45 start-page: 589 issue: 2 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib100 article-title: formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)(2)O-3/Silica surface publication-title: Environ. Sci. Technol. doi: 10.1021/es102841s – volume: 48 start-page: 501 issue: 6–7 year: 2010 ident: 10.1016/j.envpol.2023.121543_bib47 article-title: An investigation into the reactions of biochar in soil. Australian Journal of Soil publication-title: Research – volume: 350 start-page: 484 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib118 article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.175 – volume: 48 start-page: 8581 issue: 15 year: 2014 ident: 10.1016/j.envpol.2023.121543_bib62 article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings publication-title: Environ. Sci. Technol. doi: 10.1021/es404250a – volume: 243 start-page: 1302 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib133 article-title: Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe(3)o(4) and persistent free radicals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.093 – volume: 783 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib33 article-title: Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147102 – volume: 144 start-page: 175 issue: 1 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib42 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.08.015 – volume: 162 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib37 article-title: Effect of controlled temperature and biomass addition on the formed environmental persistent free radicals (EPFRs) in sewage sludge-based biochar from pyrolysis treatment publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2022.105460 – volume: 51 start-page: 11278 issue: 19 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib13 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02740 – volume: 11 start-page: 5945 issue: 12 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib35 article-title: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-5945-2011 – volume: 50 start-page: 694 issue: 2 year: 2016 ident: 10.1016/j.envpol.2023.121543_bib116 article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04042 – volume: 138 start-page: 180 year: 2013 ident: 10.1016/j.envpol.2023.121543_bib70 article-title: Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.163 – volume: 615 start-page: 1547 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib11 article-title: Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.125 – volume: 330 start-page: 804 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib82 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.013 – volume: 45 start-page: 6356 issue: 15 year: 2011 ident: 10.1016/j.envpol.2023.121543_bib17 article-title: Detection of environmentally persistent free radicals at a superfund wood treating site publication-title: Environ. Sci. Technol. doi: 10.1021/es2012947 – volume: 398 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib106 article-title: SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.03.039 – volume: 42 start-page: 4946 issue: 13 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib39 article-title: Degradation of lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and the reduction of lead toxicity publication-title: Environ. Sci. Technol. doi: 10.1021/es800072c – volume: 260 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib122 article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118160 – volume: 373 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib38 article-title: Characterization into environmentally persistent free radicals formed in incineration fly ash and pyrolysis biochar of sewage sludge and biomass publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133666 – volume: 400 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib130 article-title: The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122887 – volume: 48 start-page: 618 issue: 6–7 year: 2010 ident: 10.1016/j.envpol.2023.121543_bib29 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Aust. J. Soil Res. doi: 10.1071/SR10010 – volume: 715 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib95 article-title: Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136575 – volume: 429 year: 2022 ident: 10.1016/j.envpol.2023.121543_bib34 article-title: Contaminants in biochar and suggested mitigation measures – a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132287 – volume: 52 start-page: 2468 issue: 5 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib102 article-title: Environmentally persistent free radicals: insights on a new class of pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04439 – volume: 51 start-page: 7936 issue: 14 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib117 article-title: Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01929 – volume: 758 year: 2021 ident: 10.1016/j.envpol.2023.121543_bib86 article-title: Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: radical/non-radical mechanisms and fixed-bed reactor study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143584 – volume: 6 start-page: 11 year: 2009 ident: 10.1016/j.envpol.2023.121543_bib3 article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-6-11 – volume: 383 year: 2020 ident: 10.1016/j.envpol.2023.121543_bib134 article-title: Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123091 – volume: 51 start-page: 13517 issue: 23 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib60 article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02528 – volume: 40 start-page: 5897 issue: 19 year: 2006 ident: 10.1016/j.envpol.2023.121543_bib77 article-title: Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation publication-title: Environ. Sci. Technol. doi: 10.1021/es060742d – volume: 42 start-page: 4982 issue: 13 year: 2008 ident: 10.1016/j.envpol.2023.121543_bib69 article-title: Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter publication-title: Environ. Sci. Technol. doi: 10.1021/es071708h – volume: 317 start-page: 632 year: 2017 ident: 10.1016/j.envpol.2023.121543_bib119 article-title: Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: performances and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.038 – volume: 46 start-page: 9406 issue: 17 year: 2012 ident: 10.1016/j.envpol.2023.121543_bib101 article-title: formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface publication-title: Environ. Sci. Technol. doi: 10.1021/es301136d – volume: 52 start-page: 7981 issue: 14 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib63 article-title: Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01338 – volume: 374 start-page: 520 year: 2019 ident: 10.1016/j.envpol.2023.121543_bib72 article-title: Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.204 – volume: 643 start-page: 486 year: 2018 ident: 10.1016/j.envpol.2023.121543_bib113 article-title: Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.232 |
| SSID | ssj0004333 |
| Score | 2.567272 |
| SecondaryResourceType | review_article |
| Snippet | Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 121543 |
| SubjectTerms | biochar biomass Charcoal Environmental applications Environmental Pollutants Environmental Restoration and Remediation Environmental risks EPFRs Free Radicals Migration and transformation pollution PRFs pyrolysis remediation |
| Title | Applications, impacts, and management of biochar persistent free radicals: A review |
| URI | https://dx.doi.org/10.1016/j.envpol.2023.121543 https://www.ncbi.nlm.nih.gov/pubmed/37019262 https://www.proquest.com/docview/2797149380 https://www.proquest.com/docview/2834213335 |
| Volume | 327 |
| WOSCitedRecordID | wos000983248400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6jgMcEHRslI_JSGgXlqqN49rhVqFOA1UFQSd6ixLXkTJ1SUnaavwE_jXvGztNxzY2DlyiyLLrJM9T-_X7SchbxuOZAlHV6XuSOx73IyfsKtfxZBR7vVj3I13mmR2J8VhOp_6XRuNXFQuznos0lZeX_uK_Qg1tADaGzv4D3JsfhQa4B9DhCrDD9V7AD7ZM0vgBTRxkUblpXmz8XVBOjJIM464we3GBgGOmplzrd3lY2m8KE7ie1waESolfx8dhKBfWS7ZEkn_oFzYa6a-rJF8lNzXPq-0T2xPUpFu1rPG2rH0av9sxp2Eyz-wYq7FwsXqEY2I27SIrBQNumNjpjr6hza7MzKQNsGsr5sEwKZ2uLftGA3He0eka3riDk3bq7lezbI8_Bydno1EwGU4nR4sfDhYgQ0O9rcayQ3ZdwX3ZJLuDj8PppzrIlrEyWqN60CoOs3QWvD7xbXLObeeYUp6ZPCGP7UGEDgyBnpKGTltkb5CGy-ziJz2ipWtwaXNpkUdbWStbZP8K-NTuDsUe-bZNvWNqiXdMgXa0ph3NYmppR2vaUaQdrWj3ng6oId0zcnYynHw4dWzRDkcxny8dzpRQmFRfRYLrmT8DedVTXM2YZoJpX_R01BcsZpJrAbuBEBHIwNKN_BhLBSi2T5pplurnhIY87okZyLQhHHrhLmLCjV0XDgXdSPKw2yas-sSBshntsbDKPKhcF88DA0yAwAQGmDZxNqMWJqPLHf1FhV5gpVIjbQbAvjtGvqnADmDRRktcmOpsVQQuvHfP85ns_qWPZJ7bA9LxNjkwTNk8L8MiCm7ffXGPGV6Sh_Wf8BVpLvOVfk0eqPUyKfJDsiOm8tBy_Tdss8zD |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications%2C+impacts%2C+and+management+of+biochar+persistent+free+radicals%3A+A+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Zhang%2C+Ruirui&rft.au=Zhang%2C+Ruiling&rft.au=Zimmerman%2C+Andrew+R&rft.au=Wang%2C+Hailong&rft.date=2023-06-15&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=327&rft.spage=121543&rft_id=info:doi/10.1016%2Fj.envpol.2023.121543&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |