Applications, impacts, and management of biochar persistent free radicals: A review

Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received incre...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) Vol. 327; p. 121543
Main Authors: Zhang, Ruirui, Zhang, Ruiling, Zimmerman, Andrew R., Wang, Hailong, Gao, Bin
Format: Journal Article
Language:English
Published: England Elsevier Ltd 15.06.2023
Subjects:
ISSN:0269-7491, 1873-6424, 1873-6424
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended. [Display omitted] •Formation mechanisms and types of biochar Persistent Free Radicals (PFRs) are outlined.•Environmental applications and risks of biochar PFRs are evaluated.•Environmental migration and transformation of biochar PFRs are summarized.•Management of biochar PFRs during both production and application phases are explored.
AbstractList Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.
Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended.
Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of persistent free radicals (PFRs) produced by biomass pyrolysis (biochar production) are still poorly understood, though they have received increasing research attention in recent years. Although PFRs both directly and indirectly mediate biochar's removal of environmental pollutants, they also have the potential to cause ecological damage. In order to support and sustain biochar applications, effective strategies are needed to control the negative effects of biochar PFRs. Yet, there has been no systematic evaluation of the environmental behavior, risks, or management techniques of biochar PFRs. Thus, this review: 1) outlines the formation mechanisms and types of biochar PFRs, 2) evaluates their environmental applications and potential risks, 3) summarizes their environmental migration and transformation, and 4) explores effective management strategies for biochar PFRs during both production and application phases. Finally, future research directions are recommended. [Display omitted] •Formation mechanisms and types of biochar Persistent Free Radicals (PFRs) are outlined.•Environmental applications and risks of biochar PFRs are evaluated.•Environmental migration and transformation of biochar PFRs are summarized.•Management of biochar PFRs during both production and application phases are explored.
ArticleNumber 121543
Author Zhang, Ruiling
Zimmerman, Andrew R.
Gao, Bin
Zhang, Ruirui
Wang, Hailong
Author_xml – sequence: 1
  givenname: Ruirui
  surname: Zhang
  fullname: Zhang, Ruirui
  organization: Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
– sequence: 2
  givenname: Ruiling
  orcidid: 0000-0001-7210-5520
  surname: Zhang
  fullname: Zhang, Ruiling
  email: ruilingzhang@tjut.edu.cn
  organization: Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
– sequence: 3
  givenname: Andrew R.
  surname: Zimmerman
  fullname: Zimmerman, Andrew R.
  organization: Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
– sequence: 4
  givenname: Hailong
  surname: Wang
  fullname: Wang, Hailong
  organization: School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
– sequence: 5
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37019262$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxa0KVBbab1ChHHsgi__GMYdKK0QLEhIH6NlynEnrVWIH20vFt6-3gQuHcprR6PeeNO8dowMfPCD0heA1waQ5367BP81hXFNM2ZpQIjj7gFaklaxuOOUHaIVpo2rJFTlCxyltMcacMfYRHTGJiaINXaH7zTyPzprsgk9nlZtmY3NZjO-ryXjzCybwuQpD1blgf5tYzRCTS3l_HSJAFU1f9GO6qDZVhCcHfz6hw6Ec4PPLPEE_v189XF7Xt3c_bi43t7VlSuRaMCstFoTbTgroVS8E51bYngGTDJQk0DWSDawVIIlUUnai5S3t1CBU21h2gr4uvnMMjztIWU8uWRhH4yHskqYt45SUj8X7aLEnXLEWF_T0Bd11E_R6jm4y8Vm_ZlaAiwWwMaQUYdDW5X8B5mjcqAnW-4L0Vi8F6X1BeimoiPkb8av_O7JviwxKniXjqJN14C30LoLNug_u_wZ_AS8fqmo
CitedBy_id crossref_primary_10_1002_cctc_202401042
crossref_primary_10_1007_s13399_024_06441_0
crossref_primary_10_3390_w16233387
crossref_primary_10_1007_s42773_025_00493_9
crossref_primary_10_1016_j_scitotenv_2024_176156
crossref_primary_10_3390_nano14131067
crossref_primary_10_3390_w17131960
crossref_primary_10_1016_j_envpol_2024_124499
crossref_primary_10_1016_j_watres_2024_121516
crossref_primary_10_3390_agronomy14091951
crossref_primary_10_1002_adma_202401249
crossref_primary_10_3390_agriculture15080905
crossref_primary_10_1016_j_watres_2025_123652
crossref_primary_10_1080_10643389_2024_2386086
crossref_primary_10_1155_2024_6355929
crossref_primary_10_1007_s42773_024_00405_3
crossref_primary_10_1016_j_seppur_2024_127457
crossref_primary_10_1007_s13201_025_02415_3
crossref_primary_10_1016_j_seppur_2024_128945
crossref_primary_10_1016_j_scitotenv_2024_173679
crossref_primary_10_3390_toxics12040245
crossref_primary_10_1039_D5CY00632E
crossref_primary_10_1016_j_scitotenv_2024_174385
crossref_primary_10_1016_j_cej_2025_163605
crossref_primary_10_1016_j_jfca_2025_108027
crossref_primary_10_1016_j_jhazmat_2025_137523
crossref_primary_10_1016_j_jphotochem_2024_116247
crossref_primary_10_1021_acs_est_4c13603
crossref_primary_10_1016_j_cej_2023_148041
crossref_primary_10_1007_s42773_024_00412_4
crossref_primary_10_1007_s42773_024_00416_0
crossref_primary_10_1016_j_scitotenv_2023_168260
crossref_primary_10_1039_D5TA00439J
crossref_primary_10_1016_j_apcatb_2024_124498
Cites_doi 10.1016/j.proci.2006.07.172
10.1016/j.jhazmat.2019.05.098
10.1038/nature06870
10.1021/tx010050x
10.1016/j.biortech.2012.05.042
10.1016/j.jhazmat.2020.123039
10.1016/j.pmatsci.2020.100654
10.1016/j.chemosphere.2014.12.058
10.1016/j.biortech.2014.11.032
10.1016/j.jes.2021.02.021
10.1073/pnas.1314968110
10.1021/acs.est.9b00756
10.1039/C9GC01843C
10.1021/acsami.7b03310
10.1016/j.cej.2020.126868
10.1021/es401770y
10.1007/s10646-014-1344-1
10.1016/j.watres.2019.05.008
10.1021/es305157w
10.1021/tx970159y
10.1016/j.envpol.2011.07.023
10.1016/j.ecss.2008.06.018
10.1016/j.biombioe.2012.01.033
10.1016/j.biortech.2018.09.027
10.1021/acs.est.7b00599
10.1021/es5061512
10.1016/j.seppur.2021.120136
10.1016/j.scitotenv.2021.146807
10.1016/j.scitotenv.2021.150339
10.1021/acs.est.8b00425
10.1021/es051878z
10.1152/ajpendo.00521.2015
10.1016/j.jece.2021.106267
10.1002/bbb.198
10.1016/S0082-0784(00)80679-7
10.1016/j.cej.2018.09.184
10.1016/j.jhazmat.2018.09.019
10.1016/j.cej.2018.11.124
10.1021/acs.est.8b00672
10.1021/la00060a030
10.1016/j.envpol.2017.06.101
10.1016/j.cej.2021.131666
10.1021/ef8010096
10.1016/j.chemosphere.2022.133737
10.1021/es300362k
10.1021/ef8004459
10.1016/j.seppur.2021.120315
10.1016/S0891-5849(01)00824-3
10.1089/ees.2008.0233
10.1021/tx400227s
10.1016/j.jhazmat.2020.122768
10.1016/j.apcatb.2017.05.036
10.1007/s10311-018-0757-0
10.1021/es4048126
10.1016/j.jhazmat.2021.126805
10.1016/j.envpol.2019.02.055
10.1016/j.jaap.2016.07.004
10.1016/j.envpol.2010.03.013
10.1016/j.jhazmat.2020.122783
10.1007/s11356-017-8653-x
10.1016/j.watres.2018.03.012
10.1016/j.scs.2019.101614
10.1016/j.scitotenv.2019.06.137
10.1016/j.scitotenv.2022.155421
10.1016/j.cej.2019.06.006
10.1016/j.scitotenv.2021.151059
10.1016/j.fuel.2006.12.013
10.1016/j.jhazmat.2021.127663
10.1016/j.cej.2018.12.098
10.1021/es201702q
10.1016/j.jhazmat.2020.124376
10.1016/j.scitotenv.2005.03.021
10.1016/j.jhazmat.2021.126611
10.1016/j.cej.2021.132313
10.1021/ef058018o
10.1016/j.chemosphere.2020.127747
10.1016/j.jclepro.2019.07.037
10.1039/C7RA01425B
10.1016/S0082-0784(00)80687-6
10.1016/j.jhazmat.2013.12.027
10.1016/j.scitotenv.2020.140388
10.1021/cr60249a001
10.1016/j.envint.2019.105172
10.1016/j.chemosphere.2019.124842
10.1016/j.jclepro.2021.129805
10.1016/j.jhazmat.2022.129514
10.1016/S0045-6535(01)00258-2
10.1016/j.envpol.2022.119546
10.1080/09506608.2021.1922047
10.1007/s11104-009-0050-x
10.1016/j.scitotenv.2016.06.092
10.1016/j.chemosphere.2020.126975
10.1039/C5EM00554J
10.1016/j.jaap.2022.105770
10.1016/j.biortech.2019.02.105
10.1021/es201309c
10.1016/j.cej.2019.123244
10.1021/es102841s
10.1016/j.cej.2018.04.175
10.1021/es404250a
10.1016/j.envpol.2018.08.093
10.1016/j.scitotenv.2021.147102
10.1016/j.agee.2011.08.015
10.1016/j.jaap.2022.105460
10.1021/acs.est.7b02740
10.5194/acp-11-5945-2011
10.1021/acs.est.5b04042
10.1016/j.biortech.2013.03.163
10.1016/j.scitotenv.2017.09.125
10.1016/j.cej.2017.08.013
10.1021/es2012947
10.1016/j.canlet.2017.03.039
10.1021/es800072c
10.1016/j.apcatb.2019.118160
10.1016/j.jclepro.2022.133666
10.1016/j.jhazmat.2020.122887
10.1071/SR10010
10.1016/j.scitotenv.2020.136575
10.1016/j.cej.2021.132287
10.1021/acs.est.7b04439
10.1021/acs.est.7b01929
10.1016/j.scitotenv.2020.143584
10.1186/1743-8977-6-11
10.1016/j.cej.2019.123091
10.1021/acs.est.7b02528
10.1021/es060742d
10.1021/es071708h
10.1016/j.cej.2017.01.038
10.1021/es301136d
10.1021/acs.est.8b01338
10.1016/j.cej.2019.05.204
10.1016/j.scitotenv.2018.06.232
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2023.121543
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 37019262
10_1016_j_envpol_2023_121543
S0269749123005456
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
VH1
WUQ
XOL
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-53c7c0514cb75ed9d5544c5cd3e373e971eb673f385e717977b58482b9f5986c3
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983248400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-7491
1873-6424
IngestDate Mon Sep 29 05:23:45 EDT 2025
Sun Nov 09 14:37:51 EST 2025
Wed Feb 19 02:23:41 EST 2025
Tue Nov 18 22:12:19 EST 2025
Sat Nov 29 07:21:10 EST 2025
Tue Dec 03 03:44:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Migration and transformation
PRFs
Environmental applications
EPFRs
Environmental risks
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-53c7c0514cb75ed9d5544c5cd3e373e971eb673f385e717977b58482b9f5986c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7210-5520
PMID 37019262
PQID 2797149380
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834213335
proquest_miscellaneous_2797149380
pubmed_primary_37019262
crossref_citationtrail_10_1016_j_envpol_2023_121543
crossref_primary_10_1016_j_envpol_2023_121543
elsevier_sciencedirect_doi_10_1016_j_envpol_2023_121543
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Wu, Liu, Chen, Ahmed, Zhu (bib118) 2018; 350
Qi, Ge, Zhang, Jiang, Wang, Akram, Xu (bib81) 2020; 399
Tian, Koshland, Yano, Yachandra, Yu, Lee, Lucas (bib97) 2009; 23
Stephenson, Ragauskas, Jaligama, Redd, Parvathareddy, Peloquin, Saravia, Han, Cormier, Bridges (bib93) 2016; 310
Zhang, He, Zhao, Zhang, Bildyukevich (bib126) 2023
Maskos, Khachatryan, Dellinger (bib74) 2005; 19
Jia, Zhao, Shi, Zhu, Gao, Zhu (bib45) 2019; 362
Zhao, Song, Cao, Sun, Chen, Meng (bib130) 2020; 400
Rangarajan, Farnood (bib87) 2022; 438
Wang, Xiao, Mo (bib109) 2019; 49
Huang, Zeng, Feng, Hu, Jiang, Tang, Su, Zhang, Zeng, Liu (bib39) 2008; 42
dela Cruz, Gehling, Lomnicki, Cook, Dellinger (bib17) 2011; 45
Vejerano, Lomnicki, Dellinger (bib101) 2012; 46
Saqib Rashid, Liu, Yousaf, Song, Ahmed, Rehman, Arif, Irshad, Cheema (bib91) 2022; 330
Bolan, Hoang, Beiyuan, Gupta, Hou, Karakoti, Joseph, Jung, Kim, Kirkham, Kua, Kumar, Kwon, Ok, Perera, Rinklebe, Shaheen, Sarkar, Sarmah, Singh, Singh, Tsang, Vikrant, Vithanage, Vinu, Wang, Wijesekara, Yan, Younis, Van Zwieten (bib9) 2021; 67
Chacon, Cayuela, Sanchez-Monedero (bib10) 2022; 307
Lelieveld, Butler, Crowley, Dillon, Fischer, Ganzeveld, Harder, Lawrence, Martinez, Taraborrelli, Williams (bib57) 2008; 452
Zhu, Zhao, Kalyanaraman, Frei (bib136) 2002; 32
Fuertes, Arbestain, Sevilla, Macia-Agullo, Fiol, Lopez, Smernik, Aitkenhead, Arce, Macias (bib29) 2010; 48
Paul, Stösser, Zehl, Zwirnmann, Vogt, Steinberg (bib77) 2006; 40
Heringa, DeCarlo, Chirico, Tritscher, Dommen, Weingartner, Richter, Wehrle, Prevot, Baltensperger (bib35) 2011; 11
Khachatryan, Adounkpe, Maskos, Dellinger (bib50) 2006; 40
Khachatryan, Xu, Wu, Pechagin, Asatryan (bib53) 2016; 121
Hu, Tong, Guo, Zhang, Jiao, Li, Zhang (bib37) 2022; 162
Dellinger, Lomnicki, Khachatryan, Maskos, Hall, Adounkpe, McFerrin, Truong (bib19) 2007; 31
Dong, Ma, Gress, Harris, Li (bib23) 2014; 267
Wang, Liao, Ifthikar, Shi, Chen, Chen (bib107) 2017; 7
Kelley, Hebert, Thibeaux, Orchard, Hasan, Cormier, Thevenot, Lomnicki, Varner, Dellinger, Latimer, Dugas (bib48) 2013; 26
Odinga, Waigi, Gudda, Wang, Yang, Hu, Li, Gao (bib76) 2020; 134
Liang, Niu, Guo, Niu, Yang, Liu, Tang, Feng (bib61) 2021; 406
Khachatryan, Vejerano, Lomnicki, Dellinger (bib52) 2011; 45
Qin, Cheng, Sun, Yan, Shen (bib83) 2016; 569–570
Zhou, Zeng, Zeng, Lai, Xiao, Liu, Huang, Qin, Liu, Li, Yi, Fu, Li, Wang (bib134) 2020; 383
Gao, Yao, Qian, Zhong, Zhang, Xue, Jia (bib31) 2018; 16
Fang, Zhu, Dionysiou, Gao, Zhou (bib28) 2015; 176
Yu, Tang, Pang, Zeng, Feng, Zou, Wang, Feng, Zhu, Ouyang, Tan (bib122) 2020; 260
Qin, Li, Gao, Zhang, Ok, An (bib84) 2018; 137
Wan, Sun, Tsang, Yu, Fan, Clark, Zhou, Cao, Gao, Ok (bib104) 2019; 21
Dellinger, Pryor, Cueto, Squadrito, Deutsch (bib20) 2000; 28
Chen, Zhang, Zhang, Zhang (bib11) 2018; 615
Li, Guo, Pan, Liao, Zhang, Yang, Min, Xing (bib58) 2016; 6
Ruan, Liu, Wang, Frost, Qian, Tsang (bib89) 2018; 270
Funke, Ziegler (bib30) 2010; 4
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bib54) 2012; 41
Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bib94) 2015; 125
Fang, Gao, Liu, Dionysiou, Wang, Zhou (bib24) 2014; 48
Jiang, Ling, Chen, Liu, Li, Jiang (bib46) 2019; 359
Zou, Yu, Tang, Ren, Pang, Zhang, Xie, Liu, Liu, Luo (bib138) 2020; 261
Li, Yang, Shen, Yang, Zhang, Deng, Zhang, Zeng, Hu (bib59) 2017; 24
Chen, Huang, Hou, Ai, Zhang (bib13) 2017; 51
Yang, Zhu, Gao, Jian, Wang, Sun (bib114) 2021; 781
Dellinger, D'Alessio, D'Anna, Ciajolo, Gullett, Henry, Keener, Lighty, Lomnicki, Lucas, Oberdorster, Pitea, Suk, Sarofim, Smith, Stoeger, Tolbert, Wyzga, Zimmermann (bib18) 2008; 25
Tao, Duan, Liu, Zhu, Si, Zhu, Oleszczuk, Pan (bib95) 2020; 715
Voncina, Solmajer (bib103) 2002; 46
Koivula, Eeva (bib56) 2010; 158
Xiang, Liu, Ye, Yang, Song, Qin, Shen, Tan, Zeng, Tan (bib111) 2021; 420
Ruan, Sun, Du, Tang, Liu, Zhang, Doherty, Frost, Qian, Tsang (bib90) 2019; 281
Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (bib99) 2010; 327
Fang, Liu, Wang, Dionysiou, Zhou (bib26) 2017; 214
Khachatryan, Dellinger (bib51) 2011; 45
Qiu, Zhang, Wang, Gao, Fan, Li, Hao, Wei, Zhong (bib86) 2021; 758
Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (bib36) 2019; 159
Jia, Zhao, Shi, Zhu, Wang, Sharma (bib43) 2018; 52
Lomnicki, Truong, Vejerano, Dellinger (bib69) 2008; 42
Yang, Liu, Zheng, Jin, Zhu, Zhao, Wu, Xu (bib117) 2017; 51
Terzian, Serpone, Draper, Fox, Pelizzetti (bib96) 1991; 7
Huang, Bi, Liu, Yi, Zhang, Yao (bib41) 2022; 168
Liu, Yao, Luo, Li, Li, Ye, Gong, Yang, Zhou (bib67) 2022; 836
Bastos, Prodana, Abrantes, Keizer, Soares, Loureiro (bib5) 2014; 23
Lu, Pellechia, Flora, Berge (bib70) 2013; 138
Jeffery, Verheijen, van der Velde, Bastos (bib42) 2011; 144
Chen, Wang, Yang, Xu, Xu, Cao (bib12) 2017; 230
Fang, Liu, Gao, Dionysiou, Zhou (bib25) 2015; 49
Vejerano, Rao, Khachatryan, Cormier, Lomnicki (bib102) 2018; 52
Dellinger, Pryor, Cueto, Squadrito, Hegde, Deutsch (bib21) 2001; 14
Zhong, Jiang, Zhao, Wang, Chen, Ren, Liu, Zhang, Tsang, Crittenden (bib132) 2019; 53
Zhang, Yang, Si, Duan, Quan (bib128) 2019; 248
Balakrishna, Lomnicki, McAvey, Cole, Dellinger, Cormier (bib3) 2009; 6
Hu, Zhang, Guo, Wang, Lu (bib38) 2022; 373
Richter, Benish, Mazyar, Green, Howard (bib88) 2000; 28
Xu, Xu, Tao, Yao, Tsang, Cao (bib112) 2019; 378
Khachatryan, Adounkpe, Dellinger (bib49) 2008; 22
Gehling, Khachatryan, Dellinger (bib32) 2014; 48
Liu, Dai, Jin, Dong, Peng, Wu, Liang, Pan, Xing (bib68) 2018; 52
Yuan, Wen, Dionysiou, Sharma, Ma (bib123) 2022; 429
Liu, Zhang, Yu, Jin, Zhou (bib65) 2020; 397
Deng, Luo, Huang, Zhang (bib22) 2020; 255
Luo, Pang, Wang, Li, Wang, Lei, Huang, Yang (bib71) 2021; 108
Zhu, Wang, Geng, Chen, Lin, Zhang (bib137) 2019; 374
Pflugmacher, Pietsch, Rieger, Steinberg (bib78) 2006; 357
Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bib47) 2010; 48
Yang, Yan, Chen, Lee, Zheng (bib115) 2007; 86
Luo, Yang, Pang, Wang, Li, Lei, Huang (bib72) 2019; 374
Pryor, Stone, Zang, Bermúdez (bib80) 1998; 11
Qin, Zhang, An (bib85) 2017; 9
Nwosu, Roy, dela Cruz, Dellinger, Cook (bib75) 2016; 18
Fang, Zhu, Dionysiou, Gao, Zhou (bib27) 2015; 176
Zhang, Wei, Metz, He, Alvarez, Long (bib124) 2022; 421
Zhang, Xu, He, Zhao, Kang, Lv (bib127) 2022; 294
Cruz, Cook, Lomnicki, Dellinger (bib16) 2012; 46
Liu, Guo, Wang, Si, Zhao, Luo, Ren (bib64) 2020; 398
Chu, Dong, Li, Jin, Xiao, Xiang, Dong, Hou (bib15) 2022; 285
Lieke, Zhang, Steinberg, Pan (bib63) 2018; 52
Bi, Huang, Jiang, He, Lin (bib7) 2022; 805
Lian, Xing (bib60) 2017; 51
Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (bib40) 2019; 361
Wang, Lv, Yang, Li, Fang, Lv, Han, Dong, Jiang, Jiang, Yang, Wang (bib106) 2017; 398
Zheng, Yang, Si, Zhu, Yang, Zhao, Shi (bib131) 2021; 407
Wang, Zhang, Wang, Jia, Shang, Tang, Sun (bib110) 2022; 424
Altwicker (bib2) 1967; 67
Blocquet, Schoemaecker, Amedro, Herbinet, Battin-Leclerc, Fittschen (bib8) 2013; 110
Zhong, Zhang, Wang, Chen, Jiang, Tsang, Zhao, Ren, Liu, Crittenden (bib133) 2018; 243
Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bib6) 2011; 159
Yan, Ma, Cao, Zhang, Zhou, Liu, Qian (bib113) 2018; 643
Zhou, Lai, Liu, Li, Qin, Liu, Yi, Fu, Li, Zhang, Yan, Wang, Chen, Zeng (bib135) 2022; 807
Wang, Huang, Sun, Yang, Sillanpää (bib105) 2021; 9
Liao, Pan, Li, Zhang, Xing (bib62) 2014; 48
Lyu, Zhang, Shen (bib73) 2020; 240
Jia, Zhao, Nulaji, Tao, Wang, Sharma, Wang (bib44) 2017; 51
Guo, Yan, Li, Yan, Song, Hou, Tong, Mu, Xu (bib33) 2021; 783
Zhang, Ding, Li, Yu, Ding, Kong, Ma (bib129) 2022; 283
Vejerano, Lomnicki, Dellinger (bib100) 2011; 45
Ahmad, Lee, Dou, Mohan, Sung, Yang, Ok (bib1) 2012; 118
Han, Buss, Zheng, Song, Khalid Rafiq, Liu, Mašek, Li (bib34) 2022; 429
Song, Qin, Yu, Tang, Pang, Zhang, Wang, Deng (bib92) 2022; 424
Valavanidis, Vlachogianni, Triantafillaki, Dassenakis, Androutsos, Scoullos (bib98) 2008; 79
Pi, Li, Wang, Xu, Tao, Huang, Yao, Wu, He, Yang (bib79) 2019; 235
Baltrėnaitė-Gedienė, Lomnicki, Guo (bib4) 2022; 28
Yu, Feng, Tang, Pang, Zeng, Lu, Dong, Wang, Liu, Feng, Wang, Peng, Ye (bib121) 2020; 111
Kiruri, Dellinger, Lomnicki (bib55) 2013; 47
Yin, Guo, Du, Zhou, Zheng, Wu, Chang, Ren (bib119) 2017; 317
Zhang, Guo, Si, Yang, Zhou, Quan (bib125) 2019; 687
Wang, Shen, Wang, Du, Zhou, Liao, Wang, Chen (bib108) 2020; 740
Yang, Pan, Li, Liao, Zhang, Wu, Xing (bib116) 2016; 50
Chen, Duan, Zhang, Wang, Ren, Ho (bib14) 2020; 384
Liu, Liu, Yang, Li, Zheng (bib66) 2022; 427
Yin, Guo, Wang, Du, Wu, Chang, Ren (bib120) 2019; 357
Qin, Chen, Sun, Sun, Shen (bib82) 2017; 330
Dellinger (10.1016/j.envpol.2023.121543_bib20) 2000; 28
Ho (10.1016/j.envpol.2023.121543_bib36) 2019; 159
Bi (10.1016/j.envpol.2023.121543_bib7) 2022; 805
Khachatryan (10.1016/j.envpol.2023.121543_bib51) 2011; 45
Koivula (10.1016/j.envpol.2023.121543_bib56) 2010; 158
Joseph (10.1016/j.envpol.2023.121543_bib47) 2010; 48
Qin (10.1016/j.envpol.2023.121543_bib82) 2017; 330
Zhong (10.1016/j.envpol.2023.121543_bib133) 2018; 243
Liu (10.1016/j.envpol.2023.121543_bib65) 2020; 397
Pflugmacher (10.1016/j.envpol.2023.121543_bib78) 2006; 357
Jiang (10.1016/j.envpol.2023.121543_bib46) 2019; 359
Liao (10.1016/j.envpol.2023.121543_bib62) 2014; 48
Qin (10.1016/j.envpol.2023.121543_bib84) 2018; 137
Khachatryan (10.1016/j.envpol.2023.121543_bib53) 2016; 121
Odinga (10.1016/j.envpol.2023.121543_bib76) 2020; 134
Van Zwieten (10.1016/j.envpol.2023.121543_bib99) 2010; 327
Paul (10.1016/j.envpol.2023.121543_bib77) 2006; 40
Yuan (10.1016/j.envpol.2023.121543_bib123) 2022; 429
Liang (10.1016/j.envpol.2023.121543_bib61) 2021; 406
Han (10.1016/j.envpol.2023.121543_bib34) 2022; 429
Hu (10.1016/j.envpol.2023.121543_bib37) 2022; 162
Luo (10.1016/j.envpol.2023.121543_bib72) 2019; 374
Lieke (10.1016/j.envpol.2023.121543_bib63) 2018; 52
Xu (10.1016/j.envpol.2023.121543_bib112) 2019; 378
Chen (10.1016/j.envpol.2023.121543_bib12) 2017; 230
Zou (10.1016/j.envpol.2023.121543_bib138) 2020; 261
Yang (10.1016/j.envpol.2023.121543_bib117) 2017; 51
Wang (10.1016/j.envpol.2023.121543_bib107) 2017; 7
Jeffery (10.1016/j.envpol.2023.121543_bib42) 2011; 144
Jia (10.1016/j.envpol.2023.121543_bib43) 2018; 52
Gehling (10.1016/j.envpol.2023.121543_bib32) 2014; 48
Wang (10.1016/j.envpol.2023.121543_bib109) 2019; 49
Yin (10.1016/j.envpol.2023.121543_bib120) 2019; 357
Fang (10.1016/j.envpol.2023.121543_bib24) 2014; 48
Yang (10.1016/j.envpol.2023.121543_bib114) 2021; 781
Kelley (10.1016/j.envpol.2023.121543_bib48) 2013; 26
Dellinger (10.1016/j.envpol.2023.121543_bib19) 2007; 31
Maskos (10.1016/j.envpol.2023.121543_bib74) 2005; 19
Funke (10.1016/j.envpol.2023.121543_bib30) 2010; 4
Luo (10.1016/j.envpol.2023.121543_bib71) 2021; 108
Balakrishna (10.1016/j.envpol.2023.121543_bib3) 2009; 6
Zhu (10.1016/j.envpol.2023.121543_bib137) 2019; 374
Zhang (10.1016/j.envpol.2023.121543_bib125) 2019; 687
Yu (10.1016/j.envpol.2023.121543_bib121) 2020; 111
Khachatryan (10.1016/j.envpol.2023.121543_bib49) 2008; 22
Altwicker (10.1016/j.envpol.2023.121543_bib2) 1967; 67
Jia (10.1016/j.envpol.2023.121543_bib44) 2017; 51
Liu (10.1016/j.envpol.2023.121543_bib68) 2018; 52
Khachatryan (10.1016/j.envpol.2023.121543_bib52) 2011; 45
Qin (10.1016/j.envpol.2023.121543_bib83) 2016; 569–570
Lian (10.1016/j.envpol.2023.121543_bib60) 2017; 51
Lyu (10.1016/j.envpol.2023.121543_bib73) 2020; 240
Ruan (10.1016/j.envpol.2023.121543_bib90) 2019; 281
Zhang (10.1016/j.envpol.2023.121543_bib126) 2023
Fang (10.1016/j.envpol.2023.121543_bib26) 2017; 214
Blocquet (10.1016/j.envpol.2023.121543_bib8) 2013; 110
Valavanidis (10.1016/j.envpol.2023.121543_bib98) 2008; 79
Zhang (10.1016/j.envpol.2023.121543_bib127) 2022; 294
Dellinger (10.1016/j.envpol.2023.121543_bib18) 2008; 25
Zhang (10.1016/j.envpol.2023.121543_bib129) 2022; 283
Rangarajan (10.1016/j.envpol.2023.121543_bib87) 2022; 438
Ahmad (10.1016/j.envpol.2023.121543_bib1) 2012; 118
Yang (10.1016/j.envpol.2023.121543_bib115) 2007; 86
Lu (10.1016/j.envpol.2023.121543_bib70) 2013; 138
Qiu (10.1016/j.envpol.2023.121543_bib86) 2021; 758
Song (10.1016/j.envpol.2023.121543_bib92) 2022; 424
Hu (10.1016/j.envpol.2023.121543_bib38) 2022; 373
Ruan (10.1016/j.envpol.2023.121543_bib89) 2018; 270
Chu (10.1016/j.envpol.2023.121543_bib15) 2022; 285
Liu (10.1016/j.envpol.2023.121543_bib66) 2022; 427
Yang (10.1016/j.envpol.2023.121543_bib116) 2016; 50
Huang (10.1016/j.envpol.2023.121543_bib40) 2019; 361
Yin (10.1016/j.envpol.2023.121543_bib119) 2017; 317
Richter (10.1016/j.envpol.2023.121543_bib88) 2000; 28
Kinney (10.1016/j.envpol.2023.121543_bib54) 2012; 41
Wang (10.1016/j.envpol.2023.121543_bib108) 2020; 740
Li (10.1016/j.envpol.2023.121543_bib58) 2016; 6
Lelieveld (10.1016/j.envpol.2023.121543_bib57) 2008; 452
Tao (10.1016/j.envpol.2023.121543_bib95) 2020; 715
Fang (10.1016/j.envpol.2023.121543_bib27) 2015; 176
Pryor (10.1016/j.envpol.2023.121543_bib80) 1998; 11
Zheng (10.1016/j.envpol.2023.121543_bib131) 2021; 407
Bastos (10.1016/j.envpol.2023.121543_bib5) 2014; 23
Qi (10.1016/j.envpol.2023.121543_bib81) 2020; 399
Stephenson (10.1016/j.envpol.2023.121543_bib93) 2016; 310
Zhong (10.1016/j.envpol.2023.121543_bib132) 2019; 53
Huang (10.1016/j.envpol.2023.121543_bib41) 2022; 168
Zhou (10.1016/j.envpol.2023.121543_bib135) 2022; 807
Yang (10.1016/j.envpol.2023.121543_bib118) 2018; 350
Zhou (10.1016/j.envpol.2023.121543_bib134) 2020; 383
Saqib Rashid (10.1016/j.envpol.2023.121543_bib91) 2022; 330
Chacon (10.1016/j.envpol.2023.121543_bib10) 2022; 307
Liu (10.1016/j.envpol.2023.121543_bib64) 2020; 398
Dong (10.1016/j.envpol.2023.121543_bib23) 2014; 267
Wan (10.1016/j.envpol.2023.121543_bib104) 2019; 21
dela Cruz (10.1016/j.envpol.2023.121543_bib17) 2011; 45
Fang (10.1016/j.envpol.2023.121543_bib25) 2015; 49
Khachatryan (10.1016/j.envpol.2023.121543_bib50) 2006; 40
Heringa (10.1016/j.envpol.2023.121543_bib35) 2011; 11
Tan (10.1016/j.envpol.2023.121543_bib94) 2015; 125
Kiruri (10.1016/j.envpol.2023.121543_bib55) 2013; 47
Qin (10.1016/j.envpol.2023.121543_bib85) 2017; 9
Huang (10.1016/j.envpol.2023.121543_bib39) 2008; 42
Lomnicki (10.1016/j.envpol.2023.121543_bib69) 2008; 42
Zhang (10.1016/j.envpol.2023.121543_bib124) 2022; 421
Chen (10.1016/j.envpol.2023.121543_bib13) 2017; 51
Gao (10.1016/j.envpol.2023.121543_bib31) 2018; 16
Vejerano (10.1016/j.envpol.2023.121543_bib100) 2011; 45
Yu (10.1016/j.envpol.2023.121543_bib122) 2020; 260
Zhu (10.1016/j.envpol.2023.121543_bib136) 2002; 32
Zhang (10.1016/j.envpol.2023.121543_bib128) 2019; 248
Liu (10.1016/j.envpol.2023.121543_bib67) 2022; 836
Chen (10.1016/j.envpol.2023.121543_bib11) 2018; 615
Fang (10.1016/j.envpol.2023.121543_bib28) 2015; 176
Wang (10.1016/j.envpol.2023.121543_bib105) 2021; 9
Chen (10.1016/j.envpol.2023.121543_bib14) 2020; 384
Pi (10.1016/j.envpol.2023.121543_bib79) 2019; 235
Xiang (10.1016/j.envpol.2023.121543_bib111) 2021; 420
Fuertes (10.1016/j.envpol.2023.121543_bib29) 2010; 48
Vejerano (10.1016/j.envpol.2023.121543_bib102) 2018; 52
Beesley (10.1016/j.envpol.2023.121543_bib6) 2011; 159
Guo (10.1016/j.envpol.2023.121543_bib33) 2021; 783
Jia (10.1016/j.envpol.2023.121543_bib45) 2019; 362
Deng (10.1016/j.envpol.2023.121543_bib22) 2020; 255
Terzian (10.1016/j.envpol.2023.121543_bib96) 1991; 7
Tian (10.1016/j.envpol.2023.121543_bib97) 2009; 23
Voncina (10.1016/j.envpol.2023.121543_bib103) 2002; 46
Wang (10.1016/j.envpol.2023.121543_bib106) 2017; 398
Li (10.1016/j.envpol.2023.121543_bib59) 2017; 24
Yan (10.1016/j.envpol.2023.121543_bib113) 2018; 643
Bolan (10.1016/j.envpol.2023.121543_bib9) 2021; 67
Nwosu (10.1016/j.envpol.2023.121543_bib75) 2016; 18
Vejerano (10.1016/j.envpol.2023.121543_bib101) 2012; 46
Zhao (10.1016/j.envpol.2023.121543_bib130) 2020; 400
Baltrėnaitė-Gedienė (10.1016/j.envpol.2023.121543_bib4) 2022; 28
Wang (10.1016/j.envpol.2023.121543_bib110) 2022; 424
Cruz (10.1016/j.envpol.2023.121543_bib16) 2012; 46
Dellinger (10.1016/j.envpol.2023.121543_bib21) 2001; 14
References_xml – volume: 270
  start-page: 223
  year: 2018
  end-page: 229
  ident: bib89
  article-title: Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin
  publication-title: Bioresour. Technol.
– volume: 357
  start-page: 589
  year: 2019
  end-page: 599
  ident: bib120
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
– volume: 424
  year: 2022
  ident: bib110
  article-title: Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms
  publication-title: J. Hazard Mater.
– volume: 350
  start-page: 484
  year: 2018
  end-page: 495
  ident: bib118
  article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 465
  year: 2002
  end-page: 473
  ident: bib136
  article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study
  publication-title: Free Radic. Biol. Med.
– volume: 429
  year: 2022
  ident: bib123
  article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 1279
  year: 2002
  end-page: 1286
  ident: bib103
  article-title: Thermolysis of 2,4,6-trichlorophenol chemisorbed on aluminium oxides as example of fly ash mediated surface catalysis reaction in PCDD/PCDF formation
  publication-title: Chemosphere
– volume: 42
  start-page: 4982
  year: 2008
  end-page: 4988
  ident: bib69
  article-title: Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter
  publication-title: Environ. Sci. Technol.
– volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  ident: bib42
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 398
  year: 2020
  ident: bib64
  article-title: Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: the pivotal roles of persistent free radicals and ecotoxicity assessment
  publication-title: J. Hazard Mater.
– volume: 108
  start-page: 201
  year: 2021
  end-page: 216
  ident: bib71
  article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PFRs)
  publication-title: J. Environ. Sci.
– volume: 615
  start-page: 1547
  year: 2018
  end-page: 1556
  ident: bib11
  article-title: Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures
  publication-title: Sci. Total Environ.
– volume: 248
  start-page: 429
  year: 2019
  end-page: 437
  ident: bib128
  article-title: The adverse effect of biochar to aquatic algae- the role of free radicals
  publication-title: Environ. Pollut.
– volume: 111
  year: 2020
  ident: bib121
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring
  publication-title: Prog. Mater. Sci.
– volume: 51
  start-page: 13517
  year: 2017
  end-page: 13532
  ident: bib60
  article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 4800
  year: 2019
  end-page: 4814
  ident: bib104
  article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes
  publication-title: Green Chem.
– volume: 357
  start-page: 169
  year: 2006
  end-page: 175
  ident: bib78
  article-title: Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 1371
  year: 2001
  end-page: 1377
  ident: bib21
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  ident: bib30
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioprod. Biorefining
– volume: 6
  start-page: 11
  year: 2009
  ident: bib3
  article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity
  publication-title: Part. Fibre Toxicol.
– volume: 397
  year: 2020
  ident: bib65
  article-title: Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar
  publication-title: J. Hazard Mater.
– volume: 9
  year: 2021
  ident: bib105
  article-title: A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism
  publication-title: J. Environ. Chem. Eng.
– volume: 11
  start-page: 5945
  year: 2011
  end-page: 5957
  ident: bib35
  article-title: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer
  publication-title: Atmos. Chem. Phys.
– volume: 6
  year: 2016
  ident: bib58
  article-title: Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals
  publication-title: Sci. Rep.
– volume: 687
  start-page: 348
  year: 2019
  end-page: 354
  ident: bib125
  article-title: Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria
  publication-title: Sci. Total Environ.
– volume: 758
  year: 2021
  ident: bib86
  article-title: Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: radical/non-radical mechanisms and fixed-bed reactor study
  publication-title: Sci. Total Environ.
– volume: 134
  year: 2020
  ident: bib76
  article-title: Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars
  publication-title: Environ. Int.
– volume: 7
  start-page: 18696
  year: 2017
  end-page: 18706
  ident: bib107
  article-title: One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation
  publication-title: RSC Adv.
– volume: 569–570
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib83
  article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 9232
  year: 2011
  end-page: 9239
  ident: bib51
  article-title: Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?
  publication-title: Environ. Sci. Technol.
– volume: 255
  year: 2020
  ident: bib22
  article-title: Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals
  publication-title: Chemosphere
– volume: 46
  start-page: 9406
  year: 2012
  end-page: 9411
  ident: bib101
  article-title: formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface
  publication-title: Environ. Sci. Technol.
– volume: 230
  start-page: 540
  year: 2017
  end-page: 549
  ident: bib12
  article-title: Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 6000
  year: 2017
  end-page: 6008
  ident: bib44
  article-title: Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 2523
  year: 2009
  end-page: 2526
  ident: bib97
  article-title: Carbon-centered free radicals in particulate matter emissions from wood and coal combustion
  publication-title: Energy Fuel.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: bib99
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 283
  year: 2022
  ident: bib129
  article-title: Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: mechanism insight and performance assessment
  publication-title: Separ. Purif. Technol.
– volume: 137
  start-page: 130
  year: 2018
  end-page: 143
  ident: bib84
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
– volume: 307
  year: 2022
  ident: bib10
  article-title: Paracetamol degradation pathways in soil after biochar addition
  publication-title: Environ. Pollut.
– volume: 67
  start-page: 150
  year: 2021
  end-page: 200
  ident: bib9
  article-title: Multifunctional applications of biochar beyond carbon storage
  publication-title: Int. Mater. Rev.
– volume: 45
  start-page: 8559
  year: 2011
  end-page: 8566
  ident: bib52
  article-title: Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 1784
  year: 2014
  end-page: 1793
  ident: bib5
  article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays
  publication-title: Ecotoxicology
– volume: 420
  year: 2021
  ident: bib111
  article-title: Potential hazards of biochar: the negative environmental impacts of biochar applications
  publication-title: J. Hazard Mater.
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: bib25
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 159
  start-page: 77
  year: 2019
  end-page: 86
  ident: bib36
  article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation
  publication-title: Water Res.
– volume: 427
  year: 2022
  ident: bib66
  article-title: Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals
  publication-title: Chem. Eng. J.
– volume: 407
  year: 2021
  ident: bib131
  article-title: Application of biochars in the remediation of chromium contamination: fabrication, mechanisms, and interfering species
  publication-title: J. Hazard Mater.
– volume: 110
  start-page: 20014
  year: 2013
  end-page: 20017
  ident: bib8
  article-title: Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 1862
  year: 2013
  end-page: 1871
  ident: bib48
  article-title: Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species
  publication-title: Chem. Res. Toxicol.
– volume: 45
  start-page: 589
  year: 2011
  end-page: 594
  ident: bib100
  article-title: formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)(2)O-3/Silica surface
  publication-title: Environ. Sci. Technol.
– volume: 398
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib106
  article-title: SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts
  publication-title: Cancer Lett.
– volume: 330
  start-page: 804
  year: 2017
  end-page: 812
  ident: bib82
  article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 2468
  year: 2018
  end-page: 2481
  ident: bib102
  article-title: Environmentally persistent free radicals: insights on a new class of pollutants
  publication-title: Environ. Sci. Technol.
– volume: 359
  start-page: 572
  year: 2019
  end-page: 583
  ident: bib46
  article-title: High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors
  publication-title: Chem. Eng. J.
– volume: 783
  year: 2021
  ident: bib33
  article-title: Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes
  publication-title: Sci. Total Environ.
– volume: 121
  start-page: 75
  year: 2016
  end-page: 83
  ident: bib53
  article-title: Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol
  publication-title: J. Anal. Appl. Pyrol.
– volume: 48
  start-page: 4266
  year: 2014
  end-page: 4272
  ident: bib32
  article-title: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5
  publication-title: Environ. Sci. Technol.
– volume: 807
  year: 2022
  ident: bib135
  article-title: Activation of persulfate by swine bone derived biochar: insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways
  publication-title: Sci. Total Environ.
– volume: 51
  start-page: 7936
  year: 2017
  end-page: 7944
  ident: bib117
  article-title: Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 7981
  year: 2018
  end-page: 7987
  ident: bib63
  article-title: Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans
  publication-title: Environ. Sci. Technol.
– volume: 384
  year: 2020
  ident: bib14
  article-title: Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection
  publication-title: Chem. Eng. J.
– volume: 40
  start-page: 5071
  year: 2006
  end-page: 5076
  ident: bib50
  article-title: Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol
  publication-title: Environ. Sci. Technol.
– volume: 781
  year: 2021
  ident: bib114
  article-title: Effects of biochar-dissolved organic matter on the photodegradation of sulfamethoxazole and chloramphenicol in biochar solutions as revealed by oxygen reduction performances and free radicals
  publication-title: Sci. Total Environ.
– volume: 28
  year: 2022
  ident: bib4
  article-title: Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil
  publication-title: Environ. Technol. Innovat.
– volume: 19
  start-page: 2466
  year: 2005
  end-page: 2473
  ident: bib74
  article-title: Precursors of radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals
  publication-title: Energy Fuel.
– volume: 7
  start-page: 3081
  year: 1991
  end-page: 3089
  ident: bib96
  article-title: Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals
  publication-title: Langmuir
– volume: 18
  start-page: 42
  year: 2016
  end-page: 50
  ident: bib75
  article-title: Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay
  publication-title: Environ. Sci.-Process. impact
– volume: 47
  start-page: 4220
  year: 2013
  end-page: 4226
  ident: bib55
  article-title: Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 694
  year: 2016
  end-page: 700
  ident: bib116
  article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals
  publication-title: Environ. Sci. Technol.
– volume: 400
  year: 2020
  ident: bib130
  article-title: The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil
  publication-title: J. Hazard Mater.
– volume: 383
  year: 2020
  ident: bib134
  article-title: Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media
  publication-title: Chem. Eng. J.
– volume: 176
  start-page: 210
  year: 2015
  end-page: 217
  ident: bib27
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 5897
  year: 2006
  end-page: 5903
  ident: bib77
  article-title: Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation
  publication-title: Environ. Sci. Technol.
– volume: 805
  year: 2022
  ident: bib7
  article-title: Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose
  publication-title: Sci. Total Environ.
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bib54
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
– volume: 53
  start-page: 9034
  year: 2019
  end-page: 9044
  ident: bib132
  article-title: pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties
  publication-title: Environ. Sci. Technol.
– volume: 24
  start-page: 10267
  year: 2017
  end-page: 10278
  ident: bib59
  article-title: Mitigating biochar phytotoxicity via lanthanum (La) participation in pyrolysis
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 267
  start-page: 62
  year: 2014
  end-page: 70
  ident: bib23
  article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar
  publication-title: J. Hazard Mater.
– volume: 374
  start-page: 1253
  year: 2019
  end-page: 1263
  ident: bib137
  article-title: Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism
  publication-title: Chem. Eng. J.
– volume: 79
  start-page: 733
  year: 2008
  end-page: 739
  ident: bib98
  article-title: Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuarine
  publication-title: Coastal Shelf Sci.
– volume: 243
  start-page: 1302
  year: 2018
  end-page: 1309
  ident: bib133
  article-title: Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe(3)o(4) and persistent free radicals
  publication-title: Environ. Pollut.
– volume: 281
  start-page: 457
  year: 2019
  end-page: 468
  ident: bib90
  article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review
  publication-title: Bioresour. Technol.
– volume: 16
  start-page: 1463
  year: 2018
  end-page: 1468
  ident: bib31
  article-title: Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw
  publication-title: Environ. Chem. Lett.
– volume: 836
  year: 2022
  ident: bib67
  article-title: Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 4946
  year: 2008
  end-page: 4951
  ident: bib39
  article-title: Degradation of lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and the reduction of lead toxicity
  publication-title: Environ. Sci. Technol.
– volume: 158
  start-page: 2359
  year: 2010
  end-page: 2370
  ident: bib56
  article-title: Metal-related oxidative stress in birds
  publication-title: Environ. Pollut.
– volume: 48
  start-page: 618
  year: 2010
  end-page: 626
  ident: bib29
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Aust. J. Soil Res.
– volume: 715
  year: 2020
  ident: bib95
  article-title: Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics
  publication-title: Sci. Total Environ.
– year: 2023
  ident: bib126
  article-title: Effect of Aged Biochar after Microbial Fermentation on Antibiotics Removal: Key Roles of Microplastics and Environmentally Persistent Free Radicals
– volume: 406
  year: 2021
  ident: bib61
  article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride
  publication-title: Chem. Eng. J.
– volume: 294
  year: 2022
  ident: bib127
  article-title: Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: key role of environmentally persistent free radicals
  publication-title: Chemosphere
– volume: 22
  start-page: 3810
  year: 2008
  end-page: 3813
  ident: bib49
  article-title: Radicals from the gas-phase pyrolysis of hydroquinone: 2. Identification of alkyl peroxy radicals
  publication-title: Energy Fuel.
– volume: 285
  year: 2022
  ident: bib15
  article-title: Enhanced activation of sulfite by a mixture of zero-valent Fe-Mn bimetallic nanoparticles and biochar for degradation of sulfamethazine in water
  publication-title: Separ. Purif. Technol.
– volume: 261
  year: 2020
  ident: bib138
  article-title: Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process
  publication-title: Chemosphere
– volume: 28
  start-page: 2609
  year: 2000
  end-page: 2618
  ident: bib88
  article-title: Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame
  publication-title: Proc. Combust. Inst.
– volume: 46
  start-page: 5971
  year: 2012
  end-page: 5978
  ident: bib16
  article-title: Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals
  publication-title: Environ. Sci. Technol.
– volume: 168
  year: 2022
  ident: bib41
  article-title: Formation and regulation of environmentally persistent free radicals in biochar and removal of diethyl-phthalate in water
  publication-title: J. Anal. Appl. Pyrol.
– volume: 52
  start-page: 5725
  year: 2018
  end-page: 5733
  ident: bib43
  article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties
  publication-title: Environ. Sci. Technol.
– volume: 643
  start-page: 486
  year: 2018
  end-page: 495
  ident: bib113
  article-title: Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 475
  year: 1967
  end-page: 531
  ident: bib2
  article-title: The chemistry of stable phenoxy radicals
  publication-title: Chem. Rev.
– volume: 162
  year: 2022
  ident: bib37
  article-title: Effect of controlled temperature and biomass addition on the formed environmental persistent free radicals (EPFRs) in sewage sludge-based biochar from pyrolysis treatment
  publication-title: J. Anal. Appl. Pyrol.
– volume: 740
  year: 2020
  ident: bib108
  article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: singlet oxygen dominated mechanism and toxicity prediction
  publication-title: Sci. Total Environ.
– volume: 378
  year: 2019
  ident: bib112
  article-title: Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction
  publication-title: J. Hazard Mater.
– volume: 118
  start-page: 536
  year: 2012
  end-page: 544
  ident: bib1
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
– volume: 310
  start-page: E1003
  year: 2016
  end-page: E1015
  ident: bib93
  article-title: Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 235
  start-page: 1103
  year: 2019
  end-page: 1115
  ident: bib79
  article-title: Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway
  publication-title: J. Clean. Prod.
– volume: 452
  start-page: 737
  year: 2008
  end-page: 740
  ident: bib57
  article-title: Atmospheric oxidation capacity sustained by a tropical forest
  publication-title: Nature
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: bib115
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 374
  start-page: 520
  year: 2019
  end-page: 530
  ident: bib72
  article-title: Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 441
  year: 1998
  end-page: 448
  ident: bib80
  article-title: Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage
  publication-title: Chem. Res. Toxicol.
– volume: 9
  start-page: 17115
  year: 2017
  end-page: 17124
  ident: bib85
  article-title: Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: bib47
  article-title: An investigation into the reactions of biochar in soil. Australian Journal of Soil
  publication-title: Research
– volume: 138
  start-page: 180
  year: 2013
  end-page: 190
  ident: bib70
  article-title: Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose
  publication-title: Bioresour. Technol.
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: bib94
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 362
  start-page: 92
  year: 2019
  end-page: 98
  ident: bib45
  article-title: Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface
  publication-title: J. Hazard Mater.
– volume: 28
  start-page: 2675
  year: 2000
  end-page: 2681
  ident: bib20
  article-title: The role of combustion-generated radicals in the toxicity of PM2.5
  publication-title: Proc. Combust. Inst.
– volume: 421
  year: 2022
  ident: bib124
  article-title: Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment
  publication-title: J. Hazard Mater.
– volume: 399
  year: 2020
  ident: bib81
  article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation
  publication-title: J. Hazard Mater.
– volume: 438
  year: 2022
  ident: bib87
  article-title: Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts – a mechanistic study
  publication-title: J. Hazard Mater.
– volume: 48
  start-page: 8581
  year: 2014
  end-page: 8587
  ident: bib62
  article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings
  publication-title: Environ. Sci. Technol.
– volume: 240
  year: 2020
  ident: bib73
  article-title: Application of biochar and its composites in catalysis
  publication-title: Chemosphere
– volume: 424
  year: 2022
  ident: bib92
  article-title: Tailoring biochar for persulfate-based environmental catalysis: impact of biomass feedstocks
  publication-title: J. Hazard Mater.
– volume: 49
  year: 2019
  ident: bib109
  article-title: Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy
  publication-title: Sustain. Cities Soc.
– volume: 51
  start-page: 11278
  year: 2017
  end-page: 11287
  ident: bib13
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
– volume: 373
  year: 2022
  ident: bib38
  article-title: Characterization into environmentally persistent free radicals formed in incineration fly ash and pyrolysis biochar of sewage sludge and biomass
  publication-title: J. Clean. Prod.
– volume: 260
  year: 2020
  ident: bib122
  article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors
  publication-title: Appl. Catal. B Environ.
– volume: 48
  start-page: 1902
  year: 2014
  end-page: 1910
  ident: bib24
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: bib6
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 45
  start-page: 6356
  year: 2011
  end-page: 6365
  ident: bib17
  article-title: Detection of environmentally persistent free radicals at a superfund wood treating site
  publication-title: Environ. Sci. Technol.
– volume: 330
  year: 2022
  ident: bib91
  article-title: Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: role of free radical production in maize (Zea mays L.)
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 521
  year: 2007
  end-page: 528
  ident: bib19
  article-title: Formation and stabilization of persistent free radicals
  publication-title: Proc. Combust. Inst.
– volume: 176
  start-page: 210
  year: 2015
  end-page: 217
  ident: bib28
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
– volume: 214
  start-page: 34
  year: 2017
  end-page: 45
  ident: bib26
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B Environ.
– volume: 361
  start-page: 353
  year: 2019
  end-page: 363
  ident: bib40
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
– volume: 317
  start-page: 632
  year: 2017
  end-page: 639
  ident: bib119
  article-title: Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: performances and mechanisms
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 1107
  year: 2008
  end-page: 1114
  ident: bib18
  article-title: Report: combustion byproducts and their health effects: summary of the 10th international congress
  publication-title: Environ. Eng. Sci.
– volume: 429
  year: 2022
  ident: bib34
  article-title: Contaminants in biochar and suggested mitigation measures – a review
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 12740
  year: 2018
  end-page: 12747
  ident: bib68
  article-title: Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 521
  issue: 1
  year: 2007
  ident: 10.1016/j.envpol.2023.121543_bib19
  article-title: Formation and stabilization of persistent free radicals
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.172
– volume: 378
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib112
  article-title: Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.05.098
– volume: 452
  start-page: 737
  issue: 7188
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib57
  article-title: Atmospheric oxidation capacity sustained by a tropical forest
  publication-title: Nature
  doi: 10.1038/nature06870
– volume: 14
  start-page: 1371
  issue: 10
  year: 2001
  ident: 10.1016/j.envpol.2023.121543_bib21
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx010050x
– volume: 118
  start-page: 536
  year: 2012
  ident: 10.1016/j.envpol.2023.121543_bib1
  article-title: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.042
– volume: 399
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib81
  article-title: Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: role of graphitic N and radicals transformation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123039
– volume: 111
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib121
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100654
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.envpol.2023.121543_bib94
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 176
  start-page: 210
  year: 2015
  ident: 10.1016/j.envpol.2023.121543_bib28
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.032
– volume: 108
  start-page: 201
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib71
  article-title: A critical review on the application of biochar in environmental pollution remediation: role of persistent free radicals (PFRs)
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2021.02.021
– volume: 110
  start-page: 20014
  issue: 50
  year: 2013
  ident: 10.1016/j.envpol.2023.121543_bib8
  article-title: Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1314968110
– volume: 53
  start-page: 9034
  issue: 15
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib132
  article-title: pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00756
– volume: 21
  start-page: 4800
  issue: 17
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib104
  article-title: A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes
  publication-title: Green Chem.
  doi: 10.1039/C9GC01843C
– volume: 9
  start-page: 17115
  issue: 20
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib85
  article-title: Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03310
– volume: 406
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib61
  article-title: Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126868
– volume: 48
  start-page: 4266
  issue: 8
  year: 2014
  ident: 10.1016/j.envpol.2023.121543_bib32
  article-title: Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401770y
– volume: 23
  start-page: 1784
  issue: 9
  year: 2014
  ident: 10.1016/j.envpol.2023.121543_bib5
  article-title: Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-014-1344-1
– volume: 159
  start-page: 77
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib36
  article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.008
– volume: 47
  start-page: 4220
  issue: 9
  year: 2013
  ident: 10.1016/j.envpol.2023.121543_bib55
  article-title: Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es305157w
– volume: 176
  start-page: 210
  year: 2015
  ident: 10.1016/j.envpol.2023.121543_bib27
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.032
– volume: 11
  start-page: 441
  issue: 5
  year: 1998
  ident: 10.1016/j.envpol.2023.121543_bib80
  article-title: Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx970159y
– volume: 159
  start-page: 3269
  issue: 12
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib6
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 79
  start-page: 733
  issue: 4
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib98
  article-title: Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece). Estuarine
  publication-title: Coastal Shelf Sci.
  doi: 10.1016/j.ecss.2008.06.018
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.envpol.2023.121543_bib54
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– volume: 270
  start-page: 223
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib89
  article-title: Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.027
– volume: 51
  start-page: 6000
  issue: 11
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib44
  article-title: Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00599
– volume: 49
  start-page: 5645
  issue: 9
  year: 2015
  ident: 10.1016/j.envpol.2023.121543_bib25
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 283
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib129
  article-title: Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: mechanism insight and performance assessment
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2021.120136
– volume: 781
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib114
  article-title: Effects of biochar-dissolved organic matter on the photodegradation of sulfamethoxazole and chloramphenicol in biochar solutions as revealed by oxygen reduction performances and free radicals
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146807
– volume: 805
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib7
  article-title: Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150339
– volume: 52
  start-page: 5725
  issue: 10
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib43
  article-title: Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00425
– volume: 40
  start-page: 5071
  issue: 16
  year: 2006
  ident: 10.1016/j.envpol.2023.121543_bib50
  article-title: Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051878z
– volume: 310
  start-page: E1003
  issue: 11
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib93
  article-title: Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00521.2015
– volume: 9
  issue: 5
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib105
  article-title: A review on persulfates activation by functional biochar for organic contaminants removal: synthesis, characterizations, radical determination, and mechanism
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106267
– volume: 4
  start-page: 160
  issue: 2
  year: 2010
  ident: 10.1016/j.envpol.2023.121543_bib30
  article-title: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioprod. Biorefining
  doi: 10.1002/bbb.198
– volume: 28
  start-page: 2609
  issue: 2
  year: 2000
  ident: 10.1016/j.envpol.2023.121543_bib88
  article-title: Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80679-7
– volume: 357
  start-page: 589
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib120
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.184
– volume: 362
  start-page: 92
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib45
  article-title: Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.09.019
– volume: 359
  start-page: 572
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib46
  article-title: High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.124
– volume: 52
  start-page: 12740
  issue: 21
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib68
  article-title: Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00672
– volume: 7
  start-page: 3081
  issue: 12
  year: 1991
  ident: 10.1016/j.envpol.2023.121543_bib96
  article-title: Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals
  publication-title: Langmuir
  doi: 10.1021/la00060a030
– volume: 230
  start-page: 540
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib12
  article-title: Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.06.101
– volume: 427
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib66
  article-title: Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131666
– volume: 23
  start-page: 2523
  issue: 5–6
  year: 2009
  ident: 10.1016/j.envpol.2023.121543_bib97
  article-title: Carbon-centered free radicals in particulate matter emissions from wood and coal combustion
  publication-title: Energy Fuel.
  doi: 10.1021/ef8010096
– volume: 294
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib127
  article-title: Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: key role of environmentally persistent free radicals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133737
– volume: 46
  start-page: 5971
  issue: 11
  year: 2012
  ident: 10.1016/j.envpol.2023.121543_bib16
  article-title: Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300362k
– volume: 22
  start-page: 3810
  issue: 6
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib49
  article-title: Radicals from the gas-phase pyrolysis of hydroquinone: 2. Identification of alkyl peroxy radicals
  publication-title: Energy Fuel.
  doi: 10.1021/ef8004459
– volume: 285
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib15
  article-title: Enhanced activation of sulfite by a mixture of zero-valent Fe-Mn bimetallic nanoparticles and biochar for degradation of sulfamethazine in water
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2021.120315
– volume: 32
  start-page: 465
  issue: 5
  year: 2002
  ident: 10.1016/j.envpol.2023.121543_bib136
  article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00824-3
– volume: 25
  start-page: 1107
  issue: 8
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib18
  article-title: Report: combustion byproducts and their health effects: summary of the 10th international congress
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2008.0233
– volume: 26
  start-page: 1862
  issue: 12
  year: 2013
  ident: 10.1016/j.envpol.2023.121543_bib48
  article-title: Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx400227s
– volume: 398
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib64
  article-title: Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: the pivotal roles of persistent free radicals and ecotoxicity assessment
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122768
– volume: 214
  start-page: 34
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib26
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.036
– volume: 16
  start-page: 1463
  issue: 4
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib31
  article-title: Factors controlling the formation of persistent free radicals in hydrochar during hydrothermal conversion of rice straw
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0757-0
– volume: 48
  start-page: 1902
  issue: 3
  year: 2014
  ident: 10.1016/j.envpol.2023.121543_bib24
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4048126
– volume: 421
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib124
  article-title: Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.126805
– volume: 248
  start-page: 429
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib128
  article-title: The adverse effect of biochar to aquatic algae- the role of free radicals
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.055
– volume: 121
  start-page: 75
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib53
  article-title: Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2016.07.004
– volume: 158
  start-page: 2359
  issue: 7
  year: 2010
  ident: 10.1016/j.envpol.2023.121543_bib56
  article-title: Metal-related oxidative stress in birds
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.03.013
– volume: 397
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib65
  article-title: Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122783
– volume: 24
  start-page: 10267
  issue: 11
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib59
  article-title: Mitigating biochar phytotoxicity via lanthanum (La) participation in pyrolysis
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-017-8653-x
– volume: 137
  start-page: 130
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib84
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
– volume: 49
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib109
  article-title: Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101614
– volume: 687
  start-page: 348
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib125
  article-title: Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.137
– year: 2023
  ident: 10.1016/j.envpol.2023.121543_bib126
– volume: 836
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib67
  article-title: Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155421
– volume: 374
  start-page: 1253
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib137
  article-title: Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.006
– volume: 807
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib135
  article-title: Activation of persulfate by swine bone derived biochar: insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151059
– volume: 86
  start-page: 1781
  issue: 12
  year: 2007
  ident: 10.1016/j.envpol.2023.121543_bib115
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 424
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib92
  article-title: Tailoring biochar for persulfate-based environmental catalysis: impact of biomass feedstocks
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.127663
– volume: 361
  start-page: 353
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib40
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.098
– volume: 45
  start-page: 9232
  issue: 21
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib51
  article-title: Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201702q
– volume: 6
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib58
  article-title: Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals
  publication-title: Sci. Rep.
– volume: 407
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib131
  article-title: Application of biochars in the remediation of chromium contamination: fabrication, mechanisms, and interfering species
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.124376
– volume: 357
  start-page: 169
  issue: 1
  year: 2006
  ident: 10.1016/j.envpol.2023.121543_bib78
  article-title: Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.03.021
– volume: 420
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib111
  article-title: Potential hazards of biochar: the negative environmental impacts of biochar applications
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.126611
– volume: 429
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib123
  article-title: Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132313
– volume: 19
  start-page: 2466
  issue: 6
  year: 2005
  ident: 10.1016/j.envpol.2023.121543_bib74
  article-title: Precursors of radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals
  publication-title: Energy Fuel.
  doi: 10.1021/ef058018o
– volume: 261
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib138
  article-title: Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127747
– volume: 235
  start-page: 1103
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib79
  article-title: Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.07.037
– volume: 7
  start-page: 18696
  issue: 30
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib107
  article-title: One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01425B
– volume: 28
  start-page: 2675
  issue: 2
  year: 2000
  ident: 10.1016/j.envpol.2023.121543_bib20
  article-title: The role of combustion-generated radicals in the toxicity of PM2.5
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80687-6
– volume: 267
  start-page: 62
  year: 2014
  ident: 10.1016/j.envpol.2023.121543_bib23
  article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.12.027
– volume: 740
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib108
  article-title: Red mud modified sludge biochar for the activation of peroxymonosulfate: singlet oxygen dominated mechanism and toxicity prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140388
– volume: 67
  start-page: 475
  issue: 5
  year: 1967
  ident: 10.1016/j.envpol.2023.121543_bib2
  article-title: The chemistry of stable phenoxy radicals
  publication-title: Chem. Rev.
  doi: 10.1021/cr60249a001
– volume: 134
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib76
  article-title: Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105172
– volume: 240
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib73
  article-title: Application of biochar and its composites in catalysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124842
– volume: 330
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib91
  article-title: Efficacy of rice husk biochar and compost amendments on the translocation, bioavailability, and heavy metals speciation in contaminated soil: role of free radical production in maize (Zea mays L.)
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129805
– volume: 438
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib87
  article-title: Role of persistent free radicals and lewis acid sites in visible-light-driven wet peroxide activation by solid acid biochar catalysts – a mechanistic study
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2022.129514
– volume: 46
  start-page: 1279
  issue: 9–10
  year: 2002
  ident: 10.1016/j.envpol.2023.121543_bib103
  article-title: Thermolysis of 2,4,6-trichlorophenol chemisorbed on aluminium oxides as example of fly ash mediated surface catalysis reaction in PCDD/PCDF formation
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(01)00258-2
– volume: 424
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib110
  article-title: Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms
  publication-title: J. Hazard Mater.
– volume: 307
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib10
  article-title: Paracetamol degradation pathways in soil after biochar addition
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119546
– volume: 28
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib4
  article-title: Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil
  publication-title: Environ. Technol. Innovat.
– volume: 67
  start-page: 150
  issue: 2
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib9
  article-title: Multifunctional applications of biochar beyond carbon storage
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2021.1922047
– volume: 327
  start-page: 235
  issue: 1–2
  year: 2010
  ident: 10.1016/j.envpol.2023.121543_bib99
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– volume: 569–570
  start-page: 1
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib83
  article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.092
– volume: 255
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib22
  article-title: Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: role of environmentally persistent free radicals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126975
– volume: 18
  start-page: 42
  issue: 1
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib75
  article-title: Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay
  publication-title: Environ. Sci.-Process. impact
  doi: 10.1039/C5EM00554J
– volume: 168
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib41
  article-title: Formation and regulation of environmentally persistent free radicals in biochar and removal of diethyl-phthalate in water
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105770
– volume: 281
  start-page: 457
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib90
  article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.02.105
– volume: 45
  start-page: 8559
  issue: 19
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib52
  article-title: Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201309c
– volume: 384
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib14
  article-title: Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123244
– volume: 45
  start-page: 589
  issue: 2
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib100
  article-title: formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)(2)O-3/Silica surface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102841s
– volume: 48
  start-page: 501
  issue: 6–7
  year: 2010
  ident: 10.1016/j.envpol.2023.121543_bib47
  article-title: An investigation into the reactions of biochar in soil. Australian Journal of Soil
  publication-title: Research
– volume: 350
  start-page: 484
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib118
  article-title: Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.175
– volume: 48
  start-page: 8581
  issue: 15
  year: 2014
  ident: 10.1016/j.envpol.2023.121543_bib62
  article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404250a
– volume: 243
  start-page: 1302
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib133
  article-title: Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe(3)o(4) and persistent free radicals
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.093
– volume: 783
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib33
  article-title: Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: inherent roles of radical and non-radical processes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147102
– volume: 144
  start-page: 175
  issue: 1
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib42
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.08.015
– volume: 162
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib37
  article-title: Effect of controlled temperature and biomass addition on the formed environmental persistent free radicals (EPFRs) in sewage sludge-based biochar from pyrolysis treatment
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2022.105460
– volume: 51
  start-page: 11278
  issue: 19
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib13
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02740
– volume: 11
  start-page: 5945
  issue: 12
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib35
  article-title: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-5945-2011
– volume: 50
  start-page: 694
  issue: 2
  year: 2016
  ident: 10.1016/j.envpol.2023.121543_bib116
  article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04042
– volume: 138
  start-page: 180
  year: 2013
  ident: 10.1016/j.envpol.2023.121543_bib70
  article-title: Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.163
– volume: 615
  start-page: 1547
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib11
  article-title: Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.125
– volume: 330
  start-page: 804
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib82
  article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.013
– volume: 45
  start-page: 6356
  issue: 15
  year: 2011
  ident: 10.1016/j.envpol.2023.121543_bib17
  article-title: Detection of environmentally persistent free radicals at a superfund wood treating site
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2012947
– volume: 398
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib106
  article-title: SVCT-2 determines the sensitivity to ascorbate-induced cell death in cholangiocarcinoma cell lines and patient derived xenografts
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.03.039
– volume: 42
  start-page: 4946
  issue: 13
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib39
  article-title: Degradation of lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and the reduction of lead toxicity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800072c
– volume: 260
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib122
  article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118160
– volume: 373
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib38
  article-title: Characterization into environmentally persistent free radicals formed in incineration fly ash and pyrolysis biochar of sewage sludge and biomass
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133666
– volume: 400
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib130
  article-title: The superoxide radicals' production via persulfate activated with CuFe2O4@ Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122887
– volume: 48
  start-page: 618
  issue: 6–7
  year: 2010
  ident: 10.1016/j.envpol.2023.121543_bib29
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10010
– volume: 715
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib95
  article-title: Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136575
– volume: 429
  year: 2022
  ident: 10.1016/j.envpol.2023.121543_bib34
  article-title: Contaminants in biochar and suggested mitigation measures – a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132287
– volume: 52
  start-page: 2468
  issue: 5
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib102
  article-title: Environmentally persistent free radicals: insights on a new class of pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04439
– volume: 51
  start-page: 7936
  issue: 14
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib117
  article-title: Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01929
– volume: 758
  year: 2021
  ident: 10.1016/j.envpol.2023.121543_bib86
  article-title: Degradation of anthraquinone dye reactive blue 19 using persulfate activated with Fe/Mn modified biochar: radical/non-radical mechanisms and fixed-bed reactor study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143584
– volume: 6
  start-page: 11
  year: 2009
  ident: 10.1016/j.envpol.2023.121543_bib3
  article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-6-11
– volume: 383
  year: 2020
  ident: 10.1016/j.envpol.2023.121543_bib134
  article-title: Persulfate activation by swine bone char-derived hierarchical porous carbon: multiple mechanism system for organic pollutant degradation in aqueous media
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123091
– volume: 51
  start-page: 13517
  issue: 23
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib60
  article-title: Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02528
– volume: 40
  start-page: 5897
  issue: 19
  year: 2006
  ident: 10.1016/j.envpol.2023.121543_bib77
  article-title: Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060742d
– volume: 42
  start-page: 4982
  issue: 13
  year: 2008
  ident: 10.1016/j.envpol.2023.121543_bib69
  article-title: Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071708h
– volume: 317
  start-page: 632
  year: 2017
  ident: 10.1016/j.envpol.2023.121543_bib119
  article-title: Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: performances and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.038
– volume: 46
  start-page: 9406
  issue: 17
  year: 2012
  ident: 10.1016/j.envpol.2023.121543_bib101
  article-title: formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica surface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301136d
– volume: 52
  start-page: 7981
  issue: 14
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib63
  article-title: Overlooked risks of biochars: persistent free radicals trigger neurotoxicity in Caenorhabditis elegans
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01338
– volume: 374
  start-page: 520
  year: 2019
  ident: 10.1016/j.envpol.2023.121543_bib72
  article-title: Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.204
– volume: 643
  start-page: 486
  year: 2018
  ident: 10.1016/j.envpol.2023.121543_bib113
  article-title: Identifying the reducing capacity of biomass derived hydrochar with different post-treatment methods
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.232
SSID ssj0004333
Score 2.567272
SecondaryResourceType review_article
Snippet Biochar is a promising environmental contaminant remediation agent because of its adsorptive and catalytic properties. However, the environmental effects of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121543
SubjectTerms biochar
biomass
Charcoal
Environmental applications
Environmental Pollutants
Environmental Restoration and Remediation
Environmental risks
EPFRs
Free Radicals
Migration and transformation
pollution
PRFs
pyrolysis
remediation
Title Applications, impacts, and management of biochar persistent free radicals: A review
URI https://dx.doi.org/10.1016/j.envpol.2023.121543
https://www.ncbi.nlm.nih.gov/pubmed/37019262
https://www.proquest.com/docview/2797149380
https://www.proquest.com/docview/2834213335
Volume 327
WOSCitedRecordID wos000983248400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6jgMcEHRslI_JSGgXlqqN49rhVqFOA1UFQSd6ixLXkTJ1SUnaavwE_jXvGztNxzY2DlyiyLLrJM9T-_X7SchbxuOZAlHV6XuSOx73IyfsKtfxZBR7vVj3I13mmR2J8VhOp_6XRuNXFQuznos0lZeX_uK_Qg1tADaGzv4D3JsfhQa4B9DhCrDD9V7AD7ZM0vgBTRxkUblpXmz8XVBOjJIM464we3GBgGOmplzrd3lY2m8KE7ie1waESolfx8dhKBfWS7ZEkn_oFzYa6a-rJF8lNzXPq-0T2xPUpFu1rPG2rH0av9sxp2Eyz-wYq7FwsXqEY2I27SIrBQNumNjpjr6hza7MzKQNsGsr5sEwKZ2uLftGA3He0eka3riDk3bq7lezbI8_Bydno1EwGU4nR4sfDhYgQ0O9rcayQ3ZdwX3ZJLuDj8PppzrIlrEyWqN60CoOs3QWvD7xbXLObeeYUp6ZPCGP7UGEDgyBnpKGTltkb5CGy-ziJz2ipWtwaXNpkUdbWStbZP8K-NTuDsUe-bZNvWNqiXdMgXa0ph3NYmppR2vaUaQdrWj3ng6oId0zcnYynHw4dWzRDkcxny8dzpRQmFRfRYLrmT8DedVTXM2YZoJpX_R01BcsZpJrAbuBEBHIwNKN_BhLBSi2T5pplurnhIY87okZyLQhHHrhLmLCjV0XDgXdSPKw2yas-sSBshntsbDKPKhcF88DA0yAwAQGmDZxNqMWJqPLHf1FhV5gpVIjbQbAvjtGvqnADmDRRktcmOpsVQQuvHfP85ns_qWPZJ7bA9LxNjkwTNk8L8MiCm7ffXGPGV6Sh_Wf8BVpLvOVfk0eqPUyKfJDsiOm8tBy_Tdss8zD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications%2C+impacts%2C+and+management+of+biochar+persistent+free+radicals%3A+A+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Zhang%2C+Ruirui&rft.au=Zhang%2C+Ruiling&rft.au=Zimmerman%2C+Andrew+R&rft.au=Wang%2C+Hailong&rft.date=2023-06-15&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=327&rft.spage=121543&rft_id=info:doi/10.1016%2Fj.envpol.2023.121543&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon