Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 113; číslo 4; s. 497 - 518
Hlavní autoři: Buffa, Annalisa, Ciarlet, Patrick, Jamelot, Erell
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.10.2009
Springer
Springer Verlag
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-009-0246-2