Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements
A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method re...
Gespeichert in:
| Veröffentlicht in: | Numerische Mathematik Jg. 113; H. 4; S. 497 - 518 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer-Verlag
01.10.2009
Springer Springer Verlag |
| Schlagworte: | |
| ISSN: | 0029-599X, 0945-3245 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach. |
|---|---|
| ISSN: | 0029-599X 0945-3245 |
| DOI: | 10.1007/s00211-009-0246-2 |