Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking

This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimizatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural systems and rehabilitation engineering Ročník 29; s. 607 - 618
Hlavní autori: De Vree, Leanne, Carloni, Raffaella
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2021.3063015