A Geometric Multigrid Method for 3D Magnetotelluric Forward Modeling Using Finite-Element Method

The traditional three-dimensional (3D) magnetotelluric (MT) forward modeling using Krylov subspace algorithms has the problem of low modeling efficiency. To improve the computational efficiency of 3D MT forward modeling, we present a novel geometric multigrid algorithm for the finite element method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 2; S. 537
Hauptverfasser: Huang, Xianyang, Yin, Changchun, Wang, Luyuan, Liu, Yunhe, Zhang, Bo, Ren, Xiuyan, Su, Yang, Li, Jun, Chen, Hui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The traditional three-dimensional (3D) magnetotelluric (MT) forward modeling using Krylov subspace algorithms has the problem of low modeling efficiency. To improve the computational efficiency of 3D MT forward modeling, we present a novel geometric multigrid algorithm for the finite element method. We use the vector finite element to discretize Maxwell’s equations in the frequency domain and apply the Dirichlet boundary conditions to obtain large sparse complex linear equations for the solution of EM responses. To improve the convergence of the solution at low frequencies we use the divergence correction to correct the electric field. Then, we develop a V-cycle geometric multigrid algorithm to solve the linear equations system. To demonstrate the efficiency and effectiveness of our geometric multigrid method, we take three synthetic models (COMMEMI 3D-2 model, Dublin test model 1, modified SEG/EAEG salt dome model) and compare our results with the published ones. Numerical results show that the geometric multigrid algorithm proposed in this paper is much better than the commonly used Krylov subspace algorithms (such as SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB) in terms of the iteration number, the solution time, and the stability, and thus is more suitable for large-scale 3D MT forward modeling.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15020537