Joint Radar-Communications Exploiting Optimized OFDM Waveforms

We propose novel Joint Radar-communication spectrum sharing strategies exploiting orthogonal frequency-division multiplexing (OFDM) waveforms that concurrently achieve the objectives of both radar and communication systems. An OFDM transmitter is considered that transmits dual-purpose OFDM subcarrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 13; H. 21; S. 4376
Hauptverfasser: Ahmed, Ammar, Zhang, Yimin D., Hassanien, Aboulnasr
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2021
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose novel Joint Radar-communication spectrum sharing strategies exploiting orthogonal frequency-division multiplexing (OFDM) waveforms that concurrently achieve the objectives of both radar and communication systems. An OFDM transmitter is considered that transmits dual-purpose OFDM subcarriers such that all the subcarriers are exploited for the primary radar function and further exclusively allocated to the secondary communication function serving multiple users. The waveform optimization is performed by employing mutual information (MI) as the optimization criterion for both radar and communication operations. For the purpose of radar performance optimization, we consider the MI between the frequency-dependent target response and the transmit OFDM waveforms. On the other hand, communication system performance is evaluated in terms of the MI between the frequency-dependent communication channels of communication users with the transmit OFDM subcarriers. These optimization objectives not only enable the transmit power allocation of the OFDM subcarriers, but also govern the subcarrier distribution among the communication users. Two resource optimization scenarios are considered, resulting in radar-centric and cooperative resource allocation strategies that exploit convex and mixed-integer linear programming optimization problems for power allocation and subcarrier distribution, respectively. We further present a chunk subcarrier allocation approach that applies to both optimization strategies to reduce the computational complexity with a trivial performance loss. Simulation results are presented to illustrate the effectiveness of the proposed strategies.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13214376