MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural Network for Multispectral Pan-Sharpening

With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 3; s. 535
Hlavní autori: Li, Weisheng, Liang, Xuesong, Dong, Meilin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2021
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spatial features while maintaining spectral quality, resulting in insufficient reconstruction capabilities. To produce high-quality pan-sharpened images, a multiscale perception dense coding convolutional neural network (MDECNN) is proposed. The network is based on dual-stream input, designing multiscale blocks to separately extract the rich spatial information contained in panchromatic (PAN) images, designing feature enhancement blocks and dense coding structures to fully learn the feature mapping relationship, and proposing comprehensive loss constraint expectations. Spectral mapping is used to maintain spectral quality and obtain high-quality fused images. Experiments on different satellite datasets show that this method is superior to the existing methods in both subjective and objective evaluations.
AbstractList With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spatial features while maintaining spectral quality, resulting in insufficient reconstruction capabilities. To produce high-quality pan-sharpened images, a multiscale perception dense coding convolutional neural network (MDECNN) is proposed. The network is based on dual-stream input, designing multiscale blocks to separately extract the rich spatial information contained in panchromatic (PAN) images, designing feature enhancement blocks and dense coding structures to fully learn the feature mapping relationship, and proposing comprehensive loss constraint expectations. Spectral mapping is used to maintain spectral quality and obtain high-quality fused images. Experiments on different satellite datasets show that this method is superior to the existing methods in both subjective and objective evaluations.
Author Dong, Meilin
Li, Weisheng
Liang, Xuesong
Author_xml – sequence: 1
  givenname: Weisheng
  orcidid: 0000-0002-9033-8245
  surname: Li
  fullname: Li, Weisheng
– sequence: 2
  givenname: Xuesong
  surname: Liang
  fullname: Liang, Xuesong
– sequence: 3
  givenname: Meilin
  surname: Dong
  fullname: Dong, Meilin
BookMark eNptkU9v1DAQxS1UJErphU8QiQtCCkz8J7G5VdsFKrVLJeBs2c6kZHHtYCcgvj1OtwJU4ctYM7_3bL15So5CDEjI8wZeM6bgTcoNAwaCiUfkmEJHa04VPfrn_oSc5ryHchhrFPBj4q_Ot5vd7m11Vl0tfh6zMx6ra0wOp3mMoTrHkLHaBhf7MdxUmxh-RL-sI-OrHS7prsw_Y_pWDTHdu0zo5nVybUL96atJE4aifkYeD8ZnPL2vJ-TLu-3nzYf68uP7i83ZZe2Y4nMtB9paKzm12DUKu36QbekoIVH01ILjzkmL1EjZCTu0lNqmxwYH4IpR0bMTcnHw7aPZ6ymNtyb90tGM-q4R0402aR6dR22HIpWtpYCSi_JK2woB5cYBHMDq9fLgNaX4fcE869sSEnpvAsYlaypEo7qi4AV98QDdxyWVnArFZStVJ2RbqFcHyqWYc8Lhzwcb0Ose9d89FhgewG6czZp-iXf0_5P8Bs9PoEU
CitedBy_id crossref_primary_10_3390_s23063275
crossref_primary_10_1109_TGRS_2023_3267056
crossref_primary_10_1109_JSTARS_2021_3126645
crossref_primary_10_1109_LGRS_2022_3161360
crossref_primary_10_1016_j_inffus_2022_09_008
crossref_primary_10_3390_rs15061666
crossref_primary_10_1109_JIOT_2024_3420789
crossref_primary_10_3390_rs14236118
crossref_primary_10_1080_01431161_2024_2318766
Cites_doi 10.1109/TGRS.2010.2051674
10.1109/LGRS.2017.2736020
10.1007/978-3-319-10593-2_13
10.1109/LGRS.2019.2926681
10.1109/TGRS.2016.2614367
10.1109/TGRS.2002.803623
10.1109/CVPR.2017.19
10.1109/ICCV.2017.193
10.1109/LGRS.2007.909934
10.1109/TGRS.2010.2067219
10.3390/rs8070594
10.1109/LGRS.2014.2376034
10.1109/TSMCB.2012.2198810
10.1109/PRIA.2017.7983017
10.1109/CVPR.2017.298
10.1109/CVPR.2017.75
10.1109/CVPR.2016.182
10.1080/014311698215973
10.1109/CVPR.2016.308
10.1016/S1566-2535(01)00036-7
10.1109/LGRS.2010.2046715
10.1109/JSTARS.2018.2794888
10.1109/36.763274
10.1109/TGRS.2015.2497309
10.1109/RSIP.2017.7958807
10.1016/j.dsp.2018.04.002
10.1109/JSTARS.2013.2283236
10.1109/TGRS.2018.2817393
10.1016/j.inffus.2006.02.001
10.1109/ICSIDP47821.2019.9172997
10.1016/j.camwa.2005.08.009
10.1016/j.apgeog.2012.10.008
10.1109/CVPR.2016.90
10.1109/TGRS.2008.916211
10.1109/ICIP.2018.8451049
10.1109/TGRS.2012.2230332
10.1109/TGRS.2005.856106
10.1007/s11220-016-0135-6
10.1109/TIP.2019.2902115
10.1109/CVPR.2012.6247952
10.3390/rs11222606
10.1109/TGRS.2011.2158607
10.1109/CVPR.2016.181
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13030535
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_bf1de86b20e84526b66550452400c00d
10_3390_rs13030535
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-8f26bb842be719e7df8626b958e5d2b0c4cc8be2a8875bf622b1de1ef049325d3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:34:49 EST 2025
Thu Sep 04 20:27:31 EDT 2025
Mon Oct 20 02:50:53 EDT 2025
Sat Nov 29 07:15:11 EST 2025
Tue Nov 18 21:50:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-8f26bb842be719e7df8626b958e5d2b0c4cc8be2a8875bf622b1de1ef049325d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9033-8245
OpenAccessLink https://doaj.org/article/bf1de86b20e84526b66550452400c00d
PQID 2486897586
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_bf1de86b20e84526b66550452400c00d
proquest_miscellaneous_2551970454
proquest_journals_2486897586
crossref_primary_10_3390_rs13030535
crossref_citationtrail_10_3390_rs13030535
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fu (ref_30) 2020; 99
Scarpa (ref_42) 2018; 56
Otazu (ref_8) 2005; 43
Khan (ref_10) 2008; 5
ref_13
Jiang (ref_39) 2013; 7
ref_51
Yuan (ref_32) 2018; 11
Restaino (ref_5) 2017; 55
Zhou (ref_6) 1998; 19
ref_25
ref_23
ref_22
Li (ref_20) 2013; 51
Zhang (ref_17) 2012; 42
ref_27
Ghahremani (ref_19) 2016; 54
Rahmani (ref_26) 2010; 7
Witharana (ref_29) 2013; 37
Giraud (ref_28) 2005; 50
ref_36
ref_35
Wei (ref_24) 2017; 14
ref_34
Nencini (ref_11) 2007; 8
ref_33
Kwarteng (ref_2) 1989; 55
Xu (ref_14) 2011; 49
ref_38
ref_37
Nunez (ref_9) 1999; 37
Palsson (ref_16) 2019; 17
Wald (ref_46) 1997; 63
Shah (ref_12) 2008; 46
Zhong (ref_31) 2016; 17
Tu (ref_1) 2001; 2
Aiazzi (ref_7) 2002; 40
Ballester (ref_15) 2006; 69
Li (ref_18) 2010; 49
Huang (ref_40) 2015; 12
ref_47
ref_45
Ding (ref_50) 2019; 28
ref_44
Shahdoosti (ref_21) 2018; 79
ref_43
ref_41
Choi (ref_4) 2011; 49
ref_3
ref_49
ref_48
References_xml – volume: 49
  start-page: 295
  year: 2011
  ident: ref_4
  article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2051674
– volume: 14
  start-page: 1795
  year: 2017
  ident: ref_24
  article-title: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2736020
– ident: ref_22
  doi: 10.1007/978-3-319-10593-2_13
– volume: 55
  start-page: 339
  year: 1989
  ident: ref_2
  article-title: Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm. Eng
  publication-title: Remote Sens.
– volume: 17
  start-page: 656
  year: 2019
  ident: ref_16
  article-title: Model-Based Reduced-Rank Pansharpening
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2019.2926681
– volume: 55
  start-page: 753
  year: 2017
  ident: ref_5
  article-title: Context-Adaptive Pansharpening Based on Image Segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2614367
– volume: 40
  start-page: 2300
  year: 2002
  ident: ref_7
  article-title: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803623
– ident: ref_34
  doi: 10.1109/CVPR.2017.19
– ident: ref_25
  doi: 10.1109/ICCV.2017.193
– volume: 5
  start-page: 98
  year: 2008
  ident: ref_10
  article-title: Indusion: Fusion of Multispectral and Panchromatic Images Using the Induction Scaling Technique
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.909934
– volume: 49
  start-page: 738
  year: 2010
  ident: ref_18
  article-title: A new pan-sharpening method using a compressed sensing technique
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2067219
– ident: ref_23
  doi: 10.3390/rs8070594
– volume: 12
  start-page: 1037
  year: 2015
  ident: ref_40
  article-title: A new pan-sharpening method with deep neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2376034
– volume: 42
  start-page: 1693
  year: 2012
  ident: ref_17
  article-title: Adjustable model-based fusion method for multispectral and panchromatic images
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2012.2198810
– ident: ref_43
  doi: 10.1109/PRIA.2017.7983017
– ident: ref_37
  doi: 10.1109/CVPR.2017.298
– ident: ref_49
  doi: 10.1109/CVPR.2017.75
– ident: ref_33
  doi: 10.1109/CVPR.2016.182
– volume: 19
  start-page: 743
  year: 1998
  ident: ref_6
  article-title: A wavelet transform method to merge Landsat TM and SPOT panchromatic data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215973
– ident: ref_38
– ident: ref_48
  doi: 10.1109/CVPR.2016.308
– volume: 2
  start-page: 177
  year: 2001
  ident: ref_1
  article-title: A new look at IHS-like image fusion methods
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(01)00036-7
– ident: ref_3
– volume: 7
  start-page: 746
  year: 2010
  ident: ref_26
  article-title: An adaptive IHS pan-sharpening method
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2010.2046715
– volume: 11
  start-page: 978
  year: 2018
  ident: ref_32
  article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2794888
– volume: 37
  start-page: 1204
  year: 1999
  ident: ref_9
  article-title: Multiresolution-based image fusion with additive wavelet decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763274
– volume: 54
  start-page: 2194
  year: 2016
  ident: ref_19
  article-title: A compressed-sensing-based pan-sharpening method for spectral distortion reduction
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2497309
– volume: 99
  start-page: 1
  year: 2020
  ident: ref_30
  article-title: Deep Multiscale Detail Networks for Multiband Spectral Image Sharpening
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: ref_44
– ident: ref_41
  doi: 10.1109/RSIP.2017.7958807
– volume: 79
  start-page: 9
  year: 2018
  ident: ref_21
  article-title: Multimodal image fusion using sparse representation classification in tetrolet domain
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.04.002
– volume: 7
  start-page: 1792
  year: 2013
  ident: ref_39
  article-title: Two-step sparse coding for the pan-sharpening of remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2283236
– volume: 56
  start-page: 5443
  year: 2018
  ident: ref_42
  article-title: Target-adaptive CNN-based pansharpening
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2817393
– volume: 8
  start-page: 143
  year: 2007
  ident: ref_11
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.02.001
– ident: ref_27
  doi: 10.1109/ICSIDP47821.2019.9172997
– volume: 50
  start-page: 1069
  year: 2005
  ident: ref_28
  article-title: The loss of orthogonality in the Gram-Schmidt orthogonalization process
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.08.009
– volume: 37
  start-page: 63
  year: 2013
  ident: ref_29
  article-title: Evaluation of pansharpening algorithms in support of earth observation based rapid-mapping workflows
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2012.10.008
– ident: ref_47
  doi: 10.1109/CVPR.2016.90
– volume: 46
  start-page: 1323
  year: 2008
  ident: ref_12
  article-title: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916211
– volume: 69
  start-page: 43
  year: 2006
  ident: ref_15
  article-title: A variational model for P+ XS image fusion
  publication-title: Int. J. Comput.
– ident: ref_51
  doi: 10.1109/ICIP.2018.8451049
– volume: 51
  start-page: 4779
  year: 2013
  ident: ref_20
  article-title: Remote sensing image fusion via sparse representations over learned dictionaries
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2230332
– volume: 43
  start-page: 2376
  year: 2005
  ident: ref_8
  article-title: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.856106
– volume: 17
  start-page: 1
  year: 2016
  ident: ref_31
  article-title: Remote sensing image fusion with convolutional neural network
  publication-title: Sens. Imaging
  doi: 10.1007/s11220-016-0135-6
– volume: 63
  start-page: 691
  year: 1997
  ident: ref_46
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 28
  start-page: 3752
  year: 2019
  ident: ref_50
  article-title: DECODE: Deep confidence network for robust image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2902115
– ident: ref_13
  doi: 10.1109/CVPR.2012.6247952
– ident: ref_45
  doi: 10.3390/rs11222606
– volume: 49
  start-page: 5116
  year: 2011
  ident: ref_14
  article-title: An image fusion approach based on Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2158607
– ident: ref_36
  doi: 10.1109/CVPR.2016.181
– ident: ref_35
  doi: 10.1109/CVPR.2017.243
SSID ssj0000331904
Score 2.3224952
Snippet With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 535
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Coding
comprehensive loss
Computer vision
convolutional neural network
data collection
Decomposition
Deep learning
dense coding
feature enhancement
Feature extraction
Image enhancement
Image processing
Image quality
Image reconstruction
Information processing
Mapping
Methods
multiscale perception
Neural coding
Neural networks
Perception
Principal components analysis
Remote sensing
Satellite imagery
Satellites
Sensors
Sharpening
Spatial data
Spectra
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqNRegD5Qt6XIFb30EOE4idfhUsGyiEujVUUlblFsT-CAku0uIPXfd8brDapacekpUmKNrMx4Xp75BuBzwz0HY7RJ6pqWAhS-JCTHPiHZ0d6SAValD8MmxlVlrq7KWUy4LWNZ5VonBkXte8c58iOVG21K8m711_nPhKdG8e1qHKHxDLYYqYzkfOt0Ws2-D1kWmZGIyXyFS5pRfH-0WLLWZlSTPyxRAOz_Sx8HI3O-87_b24Xt6F6Kk5U8vIIN7F7Dizjp_ObXG7j9djadVNWxOBGh93ZJPEIxG8pbxBnFtSimnevZqolJ3z1E6SS6DOURHqF2XJDDG6lwvyZ_mTVdwhjQc-R8y1v4cT69nFwkceJC4rIyv0tMq7S1JlcWx2mJY99ywGPLwmDhlZUud85YVA2ppsK2WimbekyxpTgjU4XP9mCz6zt8B4KvF1unPXK7faFy26SoPVOQpZeYjuDL-u_XLsKR81SM25rCEuZU_cipERwOa-crEI5_rjplJg4rGDg7vOgX13U8h7VtacNGWyXR8HR1qzXFaLxBKZ2UfgT7a_7W8TQv60fmjuDT8JnOIV-uNB3297Sm4BZgBjR8_zSJD_BScV1MqPzeh827xT1-hOfugZi1OIgC_Bt5p_qi
  priority: 102
  providerName: ProQuest
Title MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural Network for Multispectral Pan-Sharpening
URI https://www.proquest.com/docview/2486897586
https://www.proquest.com/docview/2551970454
https://doaj.org/article/bf1de86b20e84526b66550452400c00d
Volume 13
WOSCitedRecordID wos000615519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KWmguJX2RbdJFpb30YGLLtiznlmwc2sMa0wekvRhLGpPD4l12N4Fc8tszI3s3CS300otsrEGI0WhGY818A_Cp4ZyDDE0Q2aYlB4UvCelgH5DsKGfIAMvc-WITWVnqi4u8elDqi2PCenjgnnFHpo0camVkiJrLYRul6FBNbyR8Ngwda98wyx84U14HxyRaYdLjkcbk1x8tV6ytGc3kkQXyQP1_6GFvXM734MVwKhQn_WxewhPsXsHzoUD55c1rmE3PiklZHosT4VNmV8RaFNU2KkWckTuKoujsnI2RmMy760GoaFxG4PAPH_It6Jw6jMJpltxTNV3A0M0L5N8kb-DnefFj8iUYCiUENs6TdaBb4ovRiTSYRTlmrmU_xeSpxtRJE9rEWm1QNqRRUtMqKQ0xNcKW3INYpi5-CzvdvMN9EHwr2FrlkLPkicmmiVA5HiHMXYjRCD5vmFfbAUWci1nMavImmNH1PaNH8HFLu-ixM_5KdcprsKVgvGv_gaSgHqSg_pcUjOBws4L1sAlXtUy00jk5RGoEH7bdtH34TqTpcH5FNCln7jIO4bv_MY8D2JUc9OLDug9hZ728wvfwzF7Tki7H8PS0KKtvYy-rYw4z_c7tbUFtlf6m_urrtPp1B2tz8E0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVJ74Y1YKGAEHDhEdZzEmyAhVHa36qrdKIcilVOI7Qk9VMmy2xb1T_EbmckmqRCIWw-cIiXWKIk_z8Oe-QbgTcE1ByM0nm-LkgIUPiQkx94j7GhnyACrxDXNJkZpGp-cJNkG_OxqYTitstOJjaJ2teU98l0VxjpOyLvVHxffPe4axaerXQuNNSwO8eoHhWyrD7MJze9bpfanx-MDr-0q4NkgCc-9uFTamDhUBkd-giNXslNvkijGyCkjbWhtbFAVtPwiU2qljO_Qx5J86UBFLiC5t2CTviKSA9jMZvPsS7-rIwOCtAzXPKhBkMjd5YqtBLOo_Gb5mgYBf-j_xqjt3_3ffsc9uNO6z2Jvjff7sIHVA9hqO7mfXj2Es_lkOk7T92JPNLXFK8IgiqxP3xETittRTCtbs9UW47q6bFcfyWWqkubS5MYLcuhbKVyPyk-yovKY43qBvJ_0CD7fyMc-hkFVV_gEBB-fllY7ZDqBSIWm8FE7liATJ9EfwrtutnPb0q1z14-znMIuRkZ-jYwhvO7HLtYkI38d9YlB049gYvDmRr38lrd6JjclvXCsjZIYc_d4ozXFoPyCUlop3RB2OjzlrbZa5ddgGsKr_jHpGT48KiqsL2hMxCXOTNj49N8iXsLWwfH8KD-apYfPYFtxDlCT5b4Dg_PlBT6H2_aSJm75ol08Ar7eNEB_AXT1WNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBYyAA4doHSdxEiSE2n2IqhBFCKTe0vgROFTJstsW9a_x65jxOqkQiFsPnCIl1iiJP8_DnvkG4GVNNQepVUGo6wYDFDokRMc-QOxIo9AAi9y4ZhNpUWSHh3m5BT_7WhhKq-x1olPUptO0Rz4RcSazHL1bOWl8WkQ5W7xbfg-ogxSdtPbtNDYQObDnPzB8W7_dn-FcvxJiMf88fR_4DgOBjvL4JMgaIZXKYqFsGuY2NQ05-CpPMpsYobiOtc6UFTUuxUQ1UggVGhvaBv3qSCQmQrlXYDuNMOgZwfbevCg_DTs8PEJ483jDiRpFOZ-s1mQxiFHlNyvomgX8YQucgVvc-p9_zW246d1qtrtZB3dgy7Z34brv8P7t_B4cf5zNp0Xxhu0yV3O8RmxaVg5pPWyG8bxl81Z3ZM3ZtGvP_KpEuURh4i4uZ56ho--lUJ0qPSnrNiDu66Wlfab78OVSPvYBjNqutQ-B0bFqo6WxRDOQiFjVoZWGJPDccBuO4XU_85X2NOzUDeS4wnCMUFJdoGQML4axyw35yF9H7RGAhhFEGO5udKuvldc_lWrwhTOpBLcZdZVXUmJsSi_IuebcjGGnx1bltdi6ugDWGJ4Pj1H_0KFS3druFMckVPpMRI6P_i3iGVxDVFYf9ouDx3BDUGqQS37fgdHJ6tQ-gav6DOdt9dSvIwZHl43PX8EvYXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDECNN%3A+A+Multiscale+Perception+Dense+Encoding+Convolutional+Neural+Network+for+Multispectral+Pan-Sharpening&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Weisheng&rft.au=Liang%2C+Xuesong&rft.au=Dong%2C+Meilin&rft.date=2021-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Frs13030535&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon