MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural Network for Multispectral Pan-Sharpening
With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spa...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 13; no. 3; p. 535 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.02.2021
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spatial features while maintaining spectral quality, resulting in insufficient reconstruction capabilities. To produce high-quality pan-sharpened images, a multiscale perception dense coding convolutional neural network (MDECNN) is proposed. The network is based on dual-stream input, designing multiscale blocks to separately extract the rich spatial information contained in panchromatic (PAN) images, designing feature enhancement blocks and dense coding structures to fully learn the feature mapping relationship, and proposing comprehensive loss constraint expectations. Spectral mapping is used to maintain spectral quality and obtain high-quality fused images. Experiments on different satellite datasets show that this method is superior to the existing methods in both subjective and objective evaluations. |
|---|---|
| AbstractList | With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural networks has achieved remarkable effects. However, because remote sensing images contain complex features, existing methods cannot fully extract spatial features while maintaining spectral quality, resulting in insufficient reconstruction capabilities. To produce high-quality pan-sharpened images, a multiscale perception dense coding convolutional neural network (MDECNN) is proposed. The network is based on dual-stream input, designing multiscale blocks to separately extract the rich spatial information contained in panchromatic (PAN) images, designing feature enhancement blocks and dense coding structures to fully learn the feature mapping relationship, and proposing comprehensive loss constraint expectations. Spectral mapping is used to maintain spectral quality and obtain high-quality fused images. Experiments on different satellite datasets show that this method is superior to the existing methods in both subjective and objective evaluations. |
| Author | Dong, Meilin Li, Weisheng Liang, Xuesong |
| Author_xml | – sequence: 1 givenname: Weisheng orcidid: 0000-0002-9033-8245 surname: Li fullname: Li, Weisheng – sequence: 2 givenname: Xuesong surname: Liang fullname: Liang, Xuesong – sequence: 3 givenname: Meilin surname: Dong fullname: Dong, Meilin |
| BookMark | eNptkU9v1DAQxS1UJErphU8QiQtCCkz8J7G5VdsFKrVLJeBs2c6kZHHtYCcgvj1OtwJU4ctYM7_3bL15So5CDEjI8wZeM6bgTcoNAwaCiUfkmEJHa04VPfrn_oSc5ryHchhrFPBj4q_Ot5vd7m11Vl0tfh6zMx6ra0wOp3mMoTrHkLHaBhf7MdxUmxh-RL-sI-OrHS7prsw_Y_pWDTHdu0zo5nVybUL96atJE4aifkYeD8ZnPL2vJ-TLu-3nzYf68uP7i83ZZe2Y4nMtB9paKzm12DUKu36QbekoIVH01ILjzkmL1EjZCTu0lNqmxwYH4IpR0bMTcnHw7aPZ6ymNtyb90tGM-q4R0402aR6dR22HIpWtpYCSi_JK2woB5cYBHMDq9fLgNaX4fcE869sSEnpvAsYlaypEo7qi4AV98QDdxyWVnArFZStVJ2RbqFcHyqWYc8Lhzwcb0Ose9d89FhgewG6czZp-iXf0_5P8Bs9PoEU |
| CitedBy_id | crossref_primary_10_3390_s23063275 crossref_primary_10_1109_TGRS_2023_3267056 crossref_primary_10_1109_JSTARS_2021_3126645 crossref_primary_10_1109_LGRS_2022_3161360 crossref_primary_10_1016_j_inffus_2022_09_008 crossref_primary_10_3390_rs15061666 crossref_primary_10_1109_JIOT_2024_3420789 crossref_primary_10_3390_rs14236118 crossref_primary_10_1080_01431161_2024_2318766 |
| Cites_doi | 10.1109/TGRS.2010.2051674 10.1109/LGRS.2017.2736020 10.1007/978-3-319-10593-2_13 10.1109/LGRS.2019.2926681 10.1109/TGRS.2016.2614367 10.1109/TGRS.2002.803623 10.1109/CVPR.2017.19 10.1109/ICCV.2017.193 10.1109/LGRS.2007.909934 10.1109/TGRS.2010.2067219 10.3390/rs8070594 10.1109/LGRS.2014.2376034 10.1109/TSMCB.2012.2198810 10.1109/PRIA.2017.7983017 10.1109/CVPR.2017.298 10.1109/CVPR.2017.75 10.1109/CVPR.2016.182 10.1080/014311698215973 10.1109/CVPR.2016.308 10.1016/S1566-2535(01)00036-7 10.1109/LGRS.2010.2046715 10.1109/JSTARS.2018.2794888 10.1109/36.763274 10.1109/TGRS.2015.2497309 10.1109/RSIP.2017.7958807 10.1016/j.dsp.2018.04.002 10.1109/JSTARS.2013.2283236 10.1109/TGRS.2018.2817393 10.1016/j.inffus.2006.02.001 10.1109/ICSIDP47821.2019.9172997 10.1016/j.camwa.2005.08.009 10.1016/j.apgeog.2012.10.008 10.1109/CVPR.2016.90 10.1109/TGRS.2008.916211 10.1109/ICIP.2018.8451049 10.1109/TGRS.2012.2230332 10.1109/TGRS.2005.856106 10.1007/s11220-016-0135-6 10.1109/TIP.2019.2902115 10.1109/CVPR.2012.6247952 10.3390/rs11222606 10.1109/TGRS.2011.2158607 10.1109/CVPR.2016.181 10.1109/CVPR.2017.243 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs13030535 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_bf1de86b20e84526b66550452400c00d 10_3390_rs13030535 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-8f26bb842be719e7df8626b958e5d2b0c4cc8be2a8875bf622b1de1ef049325d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:34:49 EST 2025 Thu Sep 04 20:27:31 EDT 2025 Mon Oct 20 02:50:53 EDT 2025 Sat Nov 29 07:15:11 EST 2025 Tue Nov 18 21:50:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-8f26bb842be719e7df8626b958e5d2b0c4cc8be2a8875bf622b1de1ef049325d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9033-8245 |
| OpenAccessLink | https://doaj.org/article/bf1de86b20e84526b66550452400c00d |
| PQID | 2486897586 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bf1de86b20e84526b66550452400c00d proquest_miscellaneous_2551970454 proquest_journals_2486897586 crossref_primary_10_3390_rs13030535 crossref_citationtrail_10_3390_rs13030535 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fu (ref_30) 2020; 99 Scarpa (ref_42) 2018; 56 Otazu (ref_8) 2005; 43 Khan (ref_10) 2008; 5 ref_13 Jiang (ref_39) 2013; 7 ref_51 Yuan (ref_32) 2018; 11 Restaino (ref_5) 2017; 55 Zhou (ref_6) 1998; 19 ref_25 ref_23 ref_22 Li (ref_20) 2013; 51 Zhang (ref_17) 2012; 42 ref_27 Ghahremani (ref_19) 2016; 54 Rahmani (ref_26) 2010; 7 Witharana (ref_29) 2013; 37 Giraud (ref_28) 2005; 50 ref_36 ref_35 Wei (ref_24) 2017; 14 ref_34 Nencini (ref_11) 2007; 8 ref_33 Kwarteng (ref_2) 1989; 55 Xu (ref_14) 2011; 49 ref_38 ref_37 Nunez (ref_9) 1999; 37 Palsson (ref_16) 2019; 17 Wald (ref_46) 1997; 63 Shah (ref_12) 2008; 46 Zhong (ref_31) 2016; 17 Tu (ref_1) 2001; 2 Aiazzi (ref_7) 2002; 40 Ballester (ref_15) 2006; 69 Li (ref_18) 2010; 49 Huang (ref_40) 2015; 12 ref_47 ref_45 Ding (ref_50) 2019; 28 ref_44 Shahdoosti (ref_21) 2018; 79 ref_43 ref_41 Choi (ref_4) 2011; 49 ref_3 ref_49 ref_48 |
| References_xml | – volume: 49 start-page: 295 year: 2011 ident: ref_4 article-title: A new adaptive component-substitution-based satellite image fusion by using partial replacement publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2051674 – volume: 14 start-page: 1795 year: 2017 ident: ref_24 article-title: Boosting the accuracy of multispectral image pansharpening by learning a deep residual network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2736020 – ident: ref_22 doi: 10.1007/978-3-319-10593-2_13 – volume: 55 start-page: 339 year: 1989 ident: ref_2 article-title: Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm. Eng publication-title: Remote Sens. – volume: 17 start-page: 656 year: 2019 ident: ref_16 article-title: Model-Based Reduced-Rank Pansharpening publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2019.2926681 – volume: 55 start-page: 753 year: 2017 ident: ref_5 article-title: Context-Adaptive Pansharpening Based on Image Segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2614367 – volume: 40 start-page: 2300 year: 2002 ident: ref_7 article-title: Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803623 – ident: ref_34 doi: 10.1109/CVPR.2017.19 – ident: ref_25 doi: 10.1109/ICCV.2017.193 – volume: 5 start-page: 98 year: 2008 ident: ref_10 article-title: Indusion: Fusion of Multispectral and Panchromatic Images Using the Induction Scaling Technique publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2007.909934 – volume: 49 start-page: 738 year: 2010 ident: ref_18 article-title: A new pan-sharpening method using a compressed sensing technique publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2067219 – ident: ref_23 doi: 10.3390/rs8070594 – volume: 12 start-page: 1037 year: 2015 ident: ref_40 article-title: A new pan-sharpening method with deep neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2376034 – volume: 42 start-page: 1693 year: 2012 ident: ref_17 article-title: Adjustable model-based fusion method for multispectral and panchromatic images publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2012.2198810 – ident: ref_43 doi: 10.1109/PRIA.2017.7983017 – ident: ref_37 doi: 10.1109/CVPR.2017.298 – ident: ref_49 doi: 10.1109/CVPR.2017.75 – ident: ref_33 doi: 10.1109/CVPR.2016.182 – volume: 19 start-page: 743 year: 1998 ident: ref_6 article-title: A wavelet transform method to merge Landsat TM and SPOT panchromatic data publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215973 – ident: ref_38 – ident: ref_48 doi: 10.1109/CVPR.2016.308 – volume: 2 start-page: 177 year: 2001 ident: ref_1 article-title: A new look at IHS-like image fusion methods publication-title: Inf. Fusion doi: 10.1016/S1566-2535(01)00036-7 – ident: ref_3 – volume: 7 start-page: 746 year: 2010 ident: ref_26 article-title: An adaptive IHS pan-sharpening method publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2010.2046715 – volume: 11 start-page: 978 year: 2018 ident: ref_32 article-title: A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2794888 – volume: 37 start-page: 1204 year: 1999 ident: ref_9 article-title: Multiresolution-based image fusion with additive wavelet decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763274 – volume: 54 start-page: 2194 year: 2016 ident: ref_19 article-title: A compressed-sensing-based pan-sharpening method for spectral distortion reduction publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2497309 – volume: 99 start-page: 1 year: 2020 ident: ref_30 article-title: Deep Multiscale Detail Networks for Multiband Spectral Image Sharpening publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: ref_44 – ident: ref_41 doi: 10.1109/RSIP.2017.7958807 – volume: 79 start-page: 9 year: 2018 ident: ref_21 article-title: Multimodal image fusion using sparse representation classification in tetrolet domain publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.04.002 – volume: 7 start-page: 1792 year: 2013 ident: ref_39 article-title: Two-step sparse coding for the pan-sharpening of remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2283236 – volume: 56 start-page: 5443 year: 2018 ident: ref_42 article-title: Target-adaptive CNN-based pansharpening publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2817393 – volume: 8 start-page: 143 year: 2007 ident: ref_11 article-title: Remote sensing image fusion using the curvelet transform publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.02.001 – ident: ref_27 doi: 10.1109/ICSIDP47821.2019.9172997 – volume: 50 start-page: 1069 year: 2005 ident: ref_28 article-title: The loss of orthogonality in the Gram-Schmidt orthogonalization process publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2005.08.009 – volume: 37 start-page: 63 year: 2013 ident: ref_29 article-title: Evaluation of pansharpening algorithms in support of earth observation based rapid-mapping workflows publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2012.10.008 – ident: ref_47 doi: 10.1109/CVPR.2016.90 – volume: 46 start-page: 1323 year: 2008 ident: ref_12 article-title: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916211 – volume: 69 start-page: 43 year: 2006 ident: ref_15 article-title: A variational model for P+ XS image fusion publication-title: Int. J. Comput. – ident: ref_51 doi: 10.1109/ICIP.2018.8451049 – volume: 51 start-page: 4779 year: 2013 ident: ref_20 article-title: Remote sensing image fusion via sparse representations over learned dictionaries publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2230332 – volume: 43 start-page: 2376 year: 2005 ident: ref_8 article-title: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.856106 – volume: 17 start-page: 1 year: 2016 ident: ref_31 article-title: Remote sensing image fusion with convolutional neural network publication-title: Sens. Imaging doi: 10.1007/s11220-016-0135-6 – volume: 63 start-page: 691 year: 1997 ident: ref_46 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm. Eng. Remote Sens. – volume: 28 start-page: 3752 year: 2019 ident: ref_50 article-title: DECODE: Deep confidence network for robust image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2902115 – ident: ref_13 doi: 10.1109/CVPR.2012.6247952 – ident: ref_45 doi: 10.3390/rs11222606 – volume: 49 start-page: 5116 year: 2011 ident: ref_14 article-title: An image fusion approach based on Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2158607 – ident: ref_36 doi: 10.1109/CVPR.2016.181 – ident: ref_35 doi: 10.1109/CVPR.2017.243 |
| SSID | ssj0000331904 |
| Score | 2.3224015 |
| Snippet | With the rapid development of deep neural networks in the field of remote sensing image fusion, the pan-sharpening method based on convolutional neural... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 535 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Coding comprehensive loss Computer vision convolutional neural network data collection Decomposition Deep learning dense coding feature enhancement Feature extraction Image enhancement Image processing Image quality Image reconstruction Information processing Mapping Methods multiscale perception Neural coding Neural networks Perception Principal components analysis Remote sensing Satellite imagery Satellites Sensors Sharpening Spatial data Spectra Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21FKlcoKVFLB-VK7j0YJF17MTmgmBZ1EO72gMgxCVaOw4cVsmyC0j8e2a83iBUxKWnRPHIsjLjsWc8fg9gX9vEGZcKnhhtOZ3scauN5HkpjMqlkyrALl7-yQcDfXVlhjHhNotllQufGBx12TjKkR8IqTNtcHebHU3uOLFG0elqpND4CJ8IJYGoG4bqus2xJCkaWCLnqKQpRvcH0xn5bMI0ebUOBbj-f7xxWGLO1v53cF9gNW4u2fHcGr7CB1-vw-fIc3779A3Gf0_7vcHgkB2zcPN2hhrybNgWt7BTjGo969euoTWN9Zr6Mdom9ktAHuERKscZbndjL3Rbk1qGo5oTAvTEU7blO1yc9c97v3nkW-AuNfKe60pk1moprM-7xudlReGONUp7VQpUqnROWy9G6JiUrTIhbLf0XV9hlJEKVaYbsFQ3td8EVmmHntQRwW4lXYnmoCo0Bpt5I9G9jjrwa_H3CxfByIkTY1xgUEKaKl401YG9VnYyh-B4U-qElNhKEGx2-NBMb4o4Cwtb4YB1ZkXiNXGr2yzDCA3f0JO5JCk7sLPQbxHn8qx4UW4HfrbNOAvpaGVU--YBZRRdACY4w633u9iGFUFVMaHueweW7qcPfheW3SMqa_ojmO8z-4P5dQ priority: 102 providerName: ProQuest |
| Title | MDECNN: A Multiscale Perception Dense Encoding Convolutional Neural Network for Multispectral Pan-Sharpening |
| URI | https://www.proquest.com/docview/2486897586 https://www.proquest.com/docview/2551970454 https://doaj.org/article/bf1de86b20e84526b66550452400c00d |
| Volume | 13 |
| WOSCitedRecordID | wos000615519900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VtBJcqj5ApNCVK7j0EG3WsRO7N1iCWqlEUQsIuERrxxGHVYJ2AYlLf3tnnJBu1UpcuDhRPLKsmfHYE898A7CvTGS1jXkYaWVCutkLjdIiTCuuZSqskB528fx7mufq4kIXK6W-KCasgwfuGDc29aRyKjE8corKYZskwUM1vqHy2SiqyPpGqV5xprwNjlG1ItHhkcbo148XS7LWhGby1w7kgfr_scN-czl-A6_7UyE76GbzFl645h2s9wXKrx_ew_zkKJvm-Rd2wHzK7BJZ61gxRKWwI3RHHcsa29JmxKZtc98rFY5LCBz-4UO-GZ5T-1EozZJ6ilkTEnTzjaPfJJtwdpydTr-GfaGE0MZa3IaqRr4YJbhx6US7tKrJTzFaKicrjtIQ1irj-AwtijR1wrlBpk5cje5BzGUVb8Fa0zZuG1itLJpAS5Vxa2ErlKOsUYomcVqgXZwF8PmReaXtUcSpmMW8RG-CGF3-YXQAewPtTYed8V-qQ5LBQEF41_4DakHZa0H5lBYEsPsowbJfhMuSC5UojQ5REsCnoRuXD92JzBrX3iGNpMxdwiH88Bzz2IENTkEvPqx7F9ZuF3fuI7yy9yjSxQheHmZ58WPkdXVEYaY_qf2VYVvIK-wvvp0Ul78B_9PwWw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RikQvbYFW3Za2RrSHHiyyjpPYSFVFdxeBWKKVChW3dO04cEDJdpcP8af4jcx4kyDUqjcOPSWKrVESP8-M7Zk3AJ-UCay2oeCBVobTyR43Skue5EJHibQy8rSLP4dJmqqTEz1agNsmF4bCKhud6BV1XlnaI98SUsVKo3cbf5v85lQ1ik5XmxIac1gcuJtrXLLNvu73cXw_C7E7OOrt8bqqALehlhdcFSI2RklhXNLVLskLcuqNjpSLcoGvLq1VxokxTr_IFLEQppu7rivQlw5FlIco9wk8RTdCKB8q-KPd0wlCBHQg5yyoYaiDremMbARxqDywe748wB_a35u03Rf_2894Cc9r55ntzNG-AguuXIXluo772c0anB_2B7003WY7zGcWzxCBjo3a4B3Wx1W7Y4PSVmSzWa8qr-q5h3KJqMRffGQ8Q3e-lkLZqNQyGpecGK4njnaTXsHxo3zsa1gsq9K9AVYoi5bCUgHhQtoc4R4VCHYTOy3RfIw78KUZ7czWZOtU8-M8w0UXISO7R0YHNtu-kznFyF97fSfQtD2IFtw_qKanWa1lMlPgC6vYiMApqh1v4hhXoHiHmtoGQd6B9QZPWa2rZtk9mDqw0TajlqGjo3HpqkvsE1GCM9E1vv23iI-wvHd0OMyG--nBO3gmKALIx7ivw-LF9NK9hyV7hQM3_eCnDoNfjw3PO9BlV3Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgEX3oiFAkbAgYO1WcdJbCSE2n2IqiWKEKDe0rXjwKFKlt22qH-NX8eM10mFQNx64JQosaw4_uZlj78BeKlMZLWNBY-0Mpx29rhRWvKsEjrJpJWJp138cpDluTo81MUG_OzOwlBaZacTvaKuWktr5EMhVao0erfpsA5pEcVk9m7xnVMFKdpp7cpprCGy785_YPi2ers3wbl-JcRs-mn8nocKA9zGWp5wVYvUGCWFcdlIu6yqycE3OlEuqQQOQ1qrjBNzFMXE1KkQZlS5kavRr45FUsXY7xXYytDJQBnb2p3mxcd-hSeKEd6RXHOixrGOhssVWQxiVPnNCvpiAX_YAm_gZrf-519zG24Gt5rtrOXgDmy45i5cDxXev53fg-MPk-k4z9-wHebPHK8Qm44VfVoPm2A879i0sS1ZczZum7MgldgvUZj4i8-ZZ-joh17onCq9KeYNJ-7rhaN1pvvw-VIG-wA2m7ZxD4HVyqINsVRauJa2QkFIahQDkzot0bDMB_C6m_nSBhp2qgZyXGI4RigpL1AygBd928WafOSvrXYJQH0LIgz3D9rl1zLon9LU-MEqNSJyiqrKmzTF2BTvUIfbKKoGsN1hqwxabFVeAGsAz_vXqH9oU2neuPYU2yR09JmIHB_9u4tncA1RWR7s5fuP4Yag1CCf_L4NmyfLU_cErtoznLfl0yBHDI4uG5-_AOwXYX0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDECNN%3A+A+Multiscale+Perception+Dense+Encoding+Convolutional+Neural+Network+for+Multispectral+Pan-Sharpening&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Weisheng&rft.au=Liang%2C+Xuesong&rft.au=Dong%2C+Meilin&rft.date=2021-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=3&rft.spage=535&rft_id=info:doi/10.3390%2Frs13030535&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13030535 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |