Guaranteed Matrix Completion via Non-Convex Factorization
Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the fact...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 62; číslo 11; s. 6535 - 6579 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the factorization model, there is a limited theoretical understanding of whether these algorithms will generate a good solution. In this paper, we establish a theoretical guarantee for the factorization-based formulation to correctly recover the underlying low-rank matrix. In particular, we show that under similar conditions to those in previous works, many standard optimization algorithms converge to the global optima of a factorization-based formulation and recover the true low-rank matrix. We study the local geometry of a properly regularized objective and prove that any stationary point in a certain local region is globally optimal. A major difference of this paper from the existing results is that we do not need resampling (i.e., using independent samples at each iteration) in either the algorithm or its analysis. |
|---|---|
| AbstractList | Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the factorization model, there is a limited theoretical understanding of whether these algorithms will generate a good solution. In this paper, we establish a theoretical guarantee for the factorization-based formulation to correctly recover the underlying low-rank matrix. In particular, we show that under similar conditions to those in previous works, many standard optimization algorithms converge to the global optima of a factorization-based formulation and recover the true low-rank matrix. We study the local geometry of a properly regularized objective and prove that any stationary point in a certain local region is globally optimal. A major difference of this paper from the existing results is that we do not need resampling (i.e., using independent samples at each iteration) in either the algorithm or its analysis. |
| Author | Zhi-Quan Luo Ruoyu Sun |
| Author_xml | – sequence: 1 givenname: Ruoyu orcidid: 0000-0003-2487-5322 surname: Sun fullname: Sun, Ruoyu – sequence: 2 givenname: Zhi-Quan surname: Luo fullname: Luo, Zhi-Quan |
| BookMark | eNp9kL9LAzEYhoNUsK3ugsuBi8vV_L7LKIethapLnUPumoOUa1KTXKn-9aa2OHRw-vKR501enhEYWGc1ALcIThCC4nE5X04wRHyCmShZQS_AEDFW5IIzOgBDCFGZC0rLKzAKYZ1WyhAeAjHrlVc2ar3KXlX0Zp9VbrPtdDTOZjujsjdn88rZnd5nU9VE5823Olxeg8tWdUHfnOYYfEyfl9VLvnifzaunRd4QQWPOW9WKQtAG05rjVdnyFsN6VZeKakQJ5HWBSiVETaDivOFMpwNrOaxrRUuFyRg8HN_devfZ6xDlxoRGd52y2vVBopIxwmlBRELvz9C1671N7RJFsCig4DBR8Eg13oXgdSu33myU_5IIyoNLmVzKg0t5cpki_CzSmPhrIXpluv-Cd8eg0Vr__VOkwohz8gOyrYHf |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2021_103350 crossref_primary_10_1016_j_laa_2020_06_010 crossref_primary_10_1109_TSP_2019_2937282 crossref_primary_10_1137_17M1130113 crossref_primary_10_1214_20_AOS1986 crossref_primary_10_1287_opre_2023_2445 crossref_primary_10_1360_SSM_2022_0105 crossref_primary_10_1109_TPAMI_2017_2748590 crossref_primary_10_1109_TSP_2024_3443291 crossref_primary_10_1287_ijoc_2024_0691 crossref_primary_10_1146_annurev_control_053018_023843 crossref_primary_10_1109_TSP_2018_2870353 crossref_primary_10_1007_s10208_020_09490_9 crossref_primary_10_3390_sym16050547 crossref_primary_10_1007_s10898_025_01478_5 crossref_primary_10_1137_23M1570442 crossref_primary_10_1007_s10957_025_02682_9 crossref_primary_10_1080_01621459_2024_2375037 crossref_primary_10_1109_TSP_2021_3138242 crossref_primary_10_1007_s40815_021_01177_9 crossref_primary_10_1109_TSP_2024_3378378 crossref_primary_10_1117_1_JEI_34_3_033016 crossref_primary_10_1109_TGRS_2020_2979908 crossref_primary_10_1007_s10208_019_09429_9 crossref_primary_10_1109_TIT_2018_2840711 crossref_primary_10_1007_s10589_022_00443_2 crossref_primary_10_1109_TSP_2019_2959218 crossref_primary_10_1109_TSP_2021_3094911 crossref_primary_10_1137_19M1290000 crossref_primary_10_1016_j_sigpro_2019_07_002 crossref_primary_10_1214_21_AOS2066 crossref_primary_10_1007_s11063_019_10111_y crossref_primary_10_1214_22_AOS2246 crossref_primary_10_1145_3360488 crossref_primary_10_1007_s10957_021_01820_3 crossref_primary_10_1007_s11222_020_09939_5 crossref_primary_10_1137_20M1330099 crossref_primary_10_1089_cmb_2021_0108 crossref_primary_10_1109_TCNS_2019_2920586 crossref_primary_10_1007_s10107_018_1285_1 crossref_primary_10_1109_TSP_2019_2952057 crossref_primary_10_1080_02331934_2022_2060828 crossref_primary_10_1080_01621459_2025_2550677 crossref_primary_10_1109_TIT_2024_3514795 crossref_primary_10_1016_j_egyai_2025_100563 crossref_primary_10_1007_s10618_018_0596_4 crossref_primary_10_1109_ACCESS_2019_2929189 crossref_primary_10_1109_TSP_2018_2883921 crossref_primary_10_1007_s10107_021_01665_8 crossref_primary_10_1186_s12864_018_4551_y crossref_primary_10_1109_TIT_2024_3413534 crossref_primary_10_1145_3372407 crossref_primary_10_1016_j_neucom_2018_08_038 crossref_primary_10_1016_j_cam_2019_112679 crossref_primary_10_1007_s10107_021_01702_6 crossref_primary_10_1214_19_AOS1854 crossref_primary_10_1016_j_cam_2017_12_048 crossref_primary_10_1109_TIT_2019_2950717 crossref_primary_10_1109_TIT_2022_3144605 crossref_primary_10_1109_TSP_2022_3192142 crossref_primary_10_1109_TBDATA_2018_2871476 crossref_primary_10_1109_TSP_2017_2757914 crossref_primary_10_1109_TIT_2025_3563450 crossref_primary_10_1109_MSP_2018_2821706 crossref_primary_10_1007_s10107_020_01486_1 crossref_primary_10_1016_j_patcog_2019_106975 crossref_primary_10_1109_TIT_2020_2992234 crossref_primary_10_1002_cpa_21957 crossref_primary_10_1109_TSP_2024_3470071 crossref_primary_10_1109_TPAMI_2021_3122259 crossref_primary_10_1137_18M1224738 crossref_primary_10_1016_j_sigpro_2025_110191 crossref_primary_10_1109_TIT_2021_3065700 crossref_primary_10_1017_S0962492920000069 crossref_primary_10_1080_01621459_2024_2335591 crossref_primary_10_1287_opre_2021_2106 crossref_primary_10_1109_TCI_2020_3024078 crossref_primary_10_1137_20M136205X crossref_primary_10_1137_18M1217644 crossref_primary_10_1214_23_AOS2293 crossref_primary_10_1109_TIT_2021_3049171 crossref_primary_10_1109_ACCESS_2019_2954859 crossref_primary_10_1109_TSP_2017_2679687 crossref_primary_10_3390_photonics10020116 crossref_primary_10_1109_ACCESS_2019_2933577 crossref_primary_10_1214_24_AOS2366 crossref_primary_10_1109_TSP_2022_3229644 crossref_primary_10_1109_TIT_2017_2756858 crossref_primary_10_1080_01621459_2021_1956501 crossref_primary_10_1109_TSP_2018_2885494 crossref_primary_10_1007_s10957_025_02648_x crossref_primary_10_1111_jcmm_70071 crossref_primary_10_1007_s11081_019_09476_9 crossref_primary_10_1109_TNET_2019_2923815 crossref_primary_10_1109_TSP_2018_2816575 crossref_primary_10_1103_PhysRevX_13_021002 crossref_primary_10_1137_17M1151390 crossref_primary_10_1016_j_compbiolchem_2024_108071 crossref_primary_10_1109_JPROC_2018_2844126 crossref_primary_10_1088_1361_6420_add6d1 crossref_primary_10_1109_TNNLS_2021_3105276 crossref_primary_10_1109_TNNLS_2020_2990990 crossref_primary_10_1109_TSP_2020_2993153 crossref_primary_10_1007_s10589_025_00708_6 crossref_primary_10_1109_TSP_2019_2924595 crossref_primary_10_1109_TGRS_2020_3033842 crossref_primary_10_1007_s11042_023_17258_w crossref_primary_10_1002_wics_1469 crossref_primary_10_1109_TSP_2018_2864660 crossref_primary_10_1109_ACCESS_2018_2880454 crossref_primary_10_1007_s10107_020_01590_2 crossref_primary_10_1109_TKDE_2020_2983708 crossref_primary_10_1016_j_acha_2023_101584 crossref_primary_10_1109_TPAMI_2023_3261185 crossref_primary_10_1007_s10107_019_01363_6 crossref_primary_10_1109_LSP_2020_3008876 crossref_primary_10_1007_s10107_023_02008_5 crossref_primary_10_1109_ACCESS_2024_3412109 crossref_primary_10_1073_pnas_1910053116 crossref_primary_10_1109_TSP_2022_3181333 crossref_primary_10_1109_TSIPN_2023_3343607 crossref_primary_10_1137_24M1697980 crossref_primary_10_1017_apr_2020_10 crossref_primary_10_1007_s10898_021_01077_0 crossref_primary_10_1109_TIT_2023_3237231 crossref_primary_10_1109_TIT_2020_2984478 crossref_primary_10_1109_TPEL_2021_3096164 crossref_primary_10_1109_TPAMI_2019_2937869 crossref_primary_10_1287_moor_2021_1228 crossref_primary_10_3390_math11122674 crossref_primary_10_1007_s00521_019_04562_6 crossref_primary_10_1007_s00034_019_01093_2 crossref_primary_10_1007_s10957_019_01606_8 crossref_primary_10_1109_TIT_2020_2992769 crossref_primary_10_3390_s19081912 crossref_primary_10_1109_MSP_2018_2832197 crossref_primary_10_1109_TIT_2018_2883623 |
| Cites_doi | 10.1109/MC.2009.263 10.1016/S0167-6377(99)00074-7 10.1109/TIT.2010.2046205 10.1080/10556789408805580 10.1137/080738970 10.1137/120891009 10.1214/12-AOS1032 10.1214/12-STS399 10.1214/13-AOS1198 10.1007/978-3-540-87481-2_24 10.1145/2488608.2488693 10.1007/978-3-540-68880-8_32 10.1023/A:1017501703105 10.1109/JPROC.2009.2035722 10.1007/s10208-009-9045-5 10.1137/090755436 10.1109/JSAC.2013.130211 10.1137/100802001 10.1145/2507157.2507164 10.1287/mnsc.13.5.344 10.1137/S1052623497331063 10.1007/BF01932678 10.1007/s12532-012-0044-1 10.1145/2020408.2020426 10.1109/TPAMI.2004.52 10.1007/s10107-009-0306-5 10.1007/s12532-013-0053-8 10.1109/FOCS.2014.75 10.1109/MSP.2014.2335237 10.1109/ICDM.2012.168 10.1145/1864708.1864726 10.1109/TIT.2010.2044061 10.1109/TIT.2011.2104999 10.1002/rsa.20089 10.1145/1345448.1345466 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TIT.2016.2598574 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 6579 |
| ExternalDocumentID | 4230131801 10_1109_TIT_2016_2598574 7536166 |
| Genre | orig-research Feature |
| GrantInformation_xml | – fundername: Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota funderid: 10.13039/100007249 – fundername: NSFC grantid: 61571384 funderid: 10.13039/501100001809 – fundername: NSF grantid: CCF-1526434 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c394t-6faf9794c24b62d8f6f20bdb8a4e14306b718a99b30a66c65e30a5f60bba48a23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 241 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386235300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Wed Oct 01 13:37:36 EDT 2025 Sun Nov 09 07:53:05 EST 2025 Sat Nov 29 03:31:36 EST 2025 Tue Nov 18 21:28:59 EST 2025 Tue Aug 26 16:40:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-6faf9794c24b62d8f6f20bdb8a4e14306b718a99b30a66c65e30a5f60bba48a23 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2487-5322 |
| PQID | 1832970960 |
| PQPubID | 36024 |
| PageCount | 45 |
| ParticipantIDs | proquest_miscellaneous_1855364739 ieee_primary_7536166 proquest_journals_1832970960 crossref_citationtrail_10_1109_TIT_2016_2598574 crossref_primary_10_1109_TIT_2016_2598574 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Nov. 2016-11-00 20161101 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 hardt (ref20) 2014 ref56 ref59 ref15 ref55 ref11 jain (ref34) 2014 ref54 ref10 loh (ref38) 2013 wang (ref41) 2014 ref16 gross (ref33) 2009 ref19 ref18 balakrishnan (ref43) 2014 hastie (ref58) 2014 candès (ref32) 2014 ref51 yuan (ref40) 2013; 14 recht (ref7) 2011; 12 ref46 ref45 wang (ref44) 2014 sun (ref52) 2015 ref49 funk (ref23) 2006 ref8 bertsekas (ref50) 1999 ref4 ref3 chen (ref47) 2014 ref6 ref5 netrapalli (ref42) 2014 paterek (ref24) 2007; 2007 sun (ref60) 2015 ref37 ref31 ref2 ref1 ref39 keshavan (ref17) 2012 de sa (ref35) 2014 ref26 toh (ref12) 2010; 6 netrapalli (ref36) 2013 ref25 ref22 ref21 ref28 ref27 ref29 bhojanapalli (ref48) 2014 sun (ref53) 2016 negahban (ref9) 2012; 13 ref62 ref61 stewart (ref63) 1998 sun (ref30) 2015 hou (ref14) 2013 |
| References_xml | – year: 2006 ident: ref23 publication-title: Netflix update Try this at home – start-page: 1107 year: 2014 ident: ref42 article-title: Non-convex robust PCA publication-title: Proc Adv Neural Inf Process Syst – year: 2014 ident: ref44 article-title: High dimensional expectation-maximization algorithm: Statistical optimization and asymptotic normality – year: 2014 ident: ref48 article-title: Universal matrix completion – ident: ref1 doi: 10.1109/MC.2009.263 – ident: ref59 doi: 10.1016/S0167-6377(99)00074-7 – year: 2014 ident: ref41 article-title: Nonconvex statistical optimization: Minimax-optimal sparse PCA in polynomial time – year: 2015 ident: ref30 article-title: Matrix completion via nonconvex factorization: Algorithms and theory – ident: ref31 doi: 10.1109/TIT.2010.2046205 – ident: ref61 doi: 10.1080/10556789408805580 – year: 1999 ident: ref50 publication-title: Nonlinear Programming – ident: ref10 doi: 10.1137/080738970 – start-page: 638 year: 2014 ident: ref20 article-title: Fast matrix completion without the condition number publication-title: Proc Conf Learning Theory (COLT) – ident: ref55 doi: 10.1137/120891009 – ident: ref13 doi: 10.1214/12-AOS1032 – ident: ref37 doi: 10.1214/12-STS399 – ident: ref39 doi: 10.1214/13-AOS1198 – start-page: 1306 year: 2015 ident: ref52 article-title: Improved iteration complexity bounds of cyclic block coordinate descent for convex problems publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1007/978-3-540-87481-2_24 – start-page: 674 year: 2014 ident: ref47 article-title: Coherent matrix completion publication-title: Proc Int Conf Mach Learn (ICML) – year: 2016 ident: ref53 article-title: Worst-case complexity of cyclic coordinate descent: O(n2) gap with randomized version – ident: ref18 doi: 10.1145/2488608.2488693 – year: 2009 ident: ref33 article-title: Quantum state tomography via compressed sensing – start-page: 476 year: 2013 ident: ref38 article-title: Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref60 article-title: On the expected convergence of randomly permuted ADMM – volume: 14 start-page: 899 year: 2013 ident: ref40 article-title: Truncated power method for sparse eigenvalue problems publication-title: J Mach Learn Res – start-page: 710 year: 2013 ident: ref14 article-title: On the linear convergence of the proximal gradient method for trace norm regularization publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref21 doi: 10.1007/978-3-540-68880-8_32 – volume: 12 start-page: 3413 year: 2011 ident: ref7 article-title: A simpler approach to matrix completion publication-title: J Mach Learn Res – volume: 2007 start-page: 5 year: 2007 ident: ref24 article-title: Improving regularized singular value decomposition for collaborative filtering publication-title: Proc KDD Cup Workshop – ident: ref51 doi: 10.1023/A:1017501703105 – ident: ref8 doi: 10.1109/JPROC.2009.2035722 – ident: ref4 doi: 10.1007/s10208-009-9045-5 – ident: ref3 doi: 10.1137/090755436 – ident: ref57 doi: 10.1109/JSAC.2013.130211 – year: 1998 ident: ref63 publication-title: Perturbation theory for the singular value decomposition – ident: ref54 doi: 10.1137/100802001 – ident: ref27 doi: 10.1145/2507157.2507164 – ident: ref49 doi: 10.1287/mnsc.13.5.344 – year: 2014 ident: ref34 article-title: Fast exact matrix completion with finite samples – ident: ref62 doi: 10.1137/S1052623497331063 – year: 2014 ident: ref58 article-title: Matrix completion and low-rank SVD via fast alternating least squares – ident: ref45 doi: 10.1007/BF01932678 – ident: ref22 doi: 10.1007/s12532-012-0044-1 – ident: ref25 doi: 10.1145/2020408.2020426 – ident: ref2 doi: 10.1109/TPAMI.2004.52 – year: 2012 ident: ref17 article-title: Efficient algorithms for collaborative filtering – year: 2014 ident: ref35 article-title: Global convergence of stochastic gradient descent for some non-convex matrix problems – ident: ref11 doi: 10.1007/s10107-009-0306-5 – year: 2014 ident: ref43 article-title: Statistical guarantees for the EM algorithm: From population to sample-based analysis – ident: ref26 doi: 10.1007/s12532-013-0053-8 – ident: ref19 doi: 10.1109/FOCS.2014.75 – ident: ref56 doi: 10.1109/MSP.2014.2335237 – ident: ref29 doi: 10.1109/ICDM.2012.168 – ident: ref28 doi: 10.1145/1864708.1864726 – volume: 6 start-page: 15 year: 2010 ident: ref12 article-title: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems publication-title: Pacific J Optim – start-page: 2796 year: 2013 ident: ref36 article-title: Phase retrieval using alternating minimization publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref5 doi: 10.1109/TIT.2010.2044061 – ident: ref6 doi: 10.1109/TIT.2011.2104999 – volume: 13 start-page: 1665 year: 2012 ident: ref9 article-title: Restricted strong convexity and weighted matrix completion: Optimal bounds with noise publication-title: J Mach Learn Res – ident: ref46 doi: 10.1002/rsa.20089 – year: 2014 ident: ref32 article-title: Phase retrieval via Wirtinger flow: Theory and algorithms – ident: ref16 doi: 10.1145/1345448.1345466 |
| SSID | ssj0014512 |
| Score | 2.6550486 |
| Snippet | Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6535 |
| SubjectTerms | Algorithm design and analysis Algorithms alternating minimization Complexity theory Economic conditions Factorization Geometry Information theory Iterative methods Mathematical models Matrix Matrix completion matrix factorization Minimization nonconvex optimization Optimization Partitioning algorithms perturbation analysis SGD |
| Title | Guaranteed Matrix Completion via Non-Convex Factorization |
| URI | https://ieeexplore.ieee.org/document/7536166 https://www.proquest.com/docview/1832970960 https://www.proquest.com/docview/1855364739 |
| Volume | 62 |
| WOSCitedRecordID | wos000386235300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM-ON0Uq1Mq-CLYrR9J2jzKcCjo8GHC3kqSpjCQVvbF_nxz_UJRBN8CTdrySy53yd39DuDGFUJRTgKHKMUcYhSMI6KUO66SieDGPhAlz-xzOJ1G8zl_bcFdkwujtS6Cz_QQm4UvP8nVBq_KRsa0Zh5jbWiHIStztRqPAaFeyQzuGQE2Z47aJeny0exphjFcbGhM_YiG5JsKKmqq_NiIC-0y6f7vv47gsLIi7fty2o-hpbMedOsKDXYlsD04-EI32AeO6wGR1In9gtT8OxuHIP12ntnbhbCneeaMMQ59Z0-KQjxVluYJvE0eZuNHpyqd4KiAk7XDUpFyI2rKJ5L5SZSy1HdlIiNBtLGQXCaNThKcy8AVjClGtWnQlLlSChIJPziFTpZn-gxjn4JA0oAnvpIk8s2kezJMqJek3BNCSAtGNZqxqnjFsbzFe1ycL1weG_xjxD-u8LfgthnxUXJq_NG3j3g3_SqoLRjUExZXQreKcXfiIZ7JLLhuHhtxQR-IyHS-wT6UImV-wM9_f_MF7OP3y3TDAXTWy42-hD21XS9Wy6tizX0C4e_TpA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwsSquzwpeBOumbZJtjiIuu7gWDyvsrSRpCoK0si_255vpC0URvAWahPAlk5l0Zr4BuCZSaiZo4FKtuUutgnFlmAqXaJVIYe0DWfLMDrtRFI7H4mUFbptcGGNMEXxm7rBZ-PKTXM_xV1nHmtbc43wV1hmlPimztRqfAWVeyQ3uWRG2r47aKUlEZzQYYRQXv7PGfsi69JsSKqqq_LiKC_3S2_3fyvZgp7Ijnfty4_dhxWQt2K1rNDiVyLZg-wvh4AEIPBGIpUmcZyTnXzo4BAm488xZvEknyjP3ASPRl06vKMVT5WkewmvvcfTQd6viCa4OBJ25PJWpsMKmfaq4n4QpT32iEhVKaqyNRLiyWkkKoQIiOdecGdtgKSdKSRpKPziCtSzPzDFGPwWBYoFIfK1o6Ntt91Q3YV6SCk9KqdrQqdGMdcUsjgUu3uPihUFEbPGPEf-4wr8NN82Ij5JV44--B4h306-Cug1n9YbFldhNY7yfRBdfZW24aj5bgUEviMxMPsc-jCFpfiBOfp_5Ejb7o-dhPBxET6ewhWspkw_PYG02mZtz2NCL2dt0clGcv08Msdbr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guaranteed+Matrix+Completion+via+Non-Convex+Factorization&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ruoyu+Sun&rft.au=Zhi-Quan+Luo&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=62&rft.issue=11&rft.spage=6535&rft.epage=6579&rft_id=info:doi/10.1109%2FTIT.2016.2598574&rft.externalDocID=7536166 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |