Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms
Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO ap...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 12; číslo 22; s. 3776 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
17.11.2020
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources. |
|---|---|
| AbstractList | Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources. Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km² study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources. |
| Author | Vizzari, Marco Tassi, Andrea |
| Author_xml | – sequence: 1 givenname: Andrea surname: Tassi fullname: Tassi, Andrea – sequence: 2 givenname: Marco orcidid: 0000-0002-4238-8897 surname: Vizzari fullname: Vizzari, Marco |
| BookMark | eNptkU2P0zAQhiO0SCzLXvgFlrggtAF_xUmOq6iUSll6gD1bE3uSukrtYrsH_j3ZFgRaMZcZjZ55R-_M6-LKB49F8ZbRj0K09FNMjHMu6lq9KK45rXkpecuv_qlfFbcp7ekSQrCWyuviuB32aHK5jQ59Rkv6x74j3QwpudEZyC544jxZhzDNSFYQ846s_OQ8ki4cBuedn8i3r5vujqz77uGOgLfkAczuiegR4hm4n6cQXd4d0pvi5Qhzwtvf-aZ4_Lz63n0p--160933pRGtzKWy44hgwfAlc6AVVEpZaFqjQBhZD8waZqShklusmDKGIYixaZTgkkorborNRdcG2OtjdAeIP3UAp8-NECe9eHFmRj22TNYI1OBgJQ51O1oxqKqRatkDI1u03l-0jjH8OGHK-uCSwXkGj-GUNK8YY01DW7mg756h-3CKfnGquVS8Zm1Ti4WiF8rEkFLEURuXz7fOEdysGdVPH9V_P7qMfHg28sfTf-Bf_yCh5w |
| CitedBy_id | crossref_primary_10_1007_s10661_025_13659_6 crossref_primary_10_3390_su17146291 crossref_primary_10_1016_j_ecolind_2024_112653 crossref_primary_10_1016_j_rse_2022_113347 crossref_primary_10_1016_j_ecolind_2022_109365 crossref_primary_10_3390_s25144314 crossref_primary_10_3390_rs14133041 crossref_primary_10_1007_s11442_025_2371_y crossref_primary_10_1002_ldr_5113 crossref_primary_10_7780_kjrs_2024_40_5_1_3 crossref_primary_10_1016_j_rsase_2024_101391 crossref_primary_10_3390_land12030581 crossref_primary_10_3390_rs13061148 crossref_primary_10_3390_agriculture15080829 crossref_primary_10_3390_rs13040561 crossref_primary_10_1016_j_sciaf_2024_e02262 crossref_primary_10_1080_10095020_2023_2250378 crossref_primary_10_1016_j_rsase_2024_101158 crossref_primary_10_1007_s10661_022_10437_6 crossref_primary_10_1109_TGRS_2024_3472080 crossref_primary_10_1016_j_jag_2022_103010 crossref_primary_10_3390_rs13071299 crossref_primary_10_1016_j_ocecoaman_2024_107518 crossref_primary_10_1007_s10661_024_13038_7 crossref_primary_10_1088_1755_1315_932_1_012011 crossref_primary_10_1109_JSTARS_2022_3204223 crossref_primary_10_1016_j_isprsjprs_2022_01_014 crossref_primary_10_3390_su151813786 crossref_primary_10_1109_JSTARS_2025_3564008 crossref_primary_10_1007_s12517_025_12266_6 crossref_primary_10_1080_15481603_2024_2302221 crossref_primary_10_3390_rs14225727 crossref_primary_10_1186_s12302_024_00901_0 crossref_primary_10_3390_rs16081366 crossref_primary_10_1016_j_ufug_2025_128697 crossref_primary_10_3390_rs13122299 crossref_primary_10_1016_j_scitotenv_2024_174377 crossref_primary_10_1017_jog_2023_18 crossref_primary_10_3390_agriengineering6010030 crossref_primary_10_3390_rs17010172 crossref_primary_10_1007_s11676_025_01870_7 crossref_primary_10_3390_rs17030534 crossref_primary_10_3390_rs16152773 crossref_primary_10_1016_j_ecolind_2024_112639 crossref_primary_10_3390_rs14225734 crossref_primary_10_1016_j_rineng_2024_101788 crossref_primary_10_3390_rs15123101 crossref_primary_10_3390_su14138046 crossref_primary_10_1016_j_jag_2025_104828 crossref_primary_10_1186_s40068_024_00348_5 crossref_primary_10_1016_j_rse_2025_114802 crossref_primary_10_3390_jmse10091322 crossref_primary_10_1109_TGRS_2025_3539182 crossref_primary_10_3390_rs14020273 crossref_primary_10_3390_rs13132510 crossref_primary_10_1016_j_jenvman_2025_124165 crossref_primary_10_3390_geosciences14060152 crossref_primary_10_3390_rs16193738 crossref_primary_10_1080_10106049_2025_2491640 crossref_primary_10_3390_rs16244622 crossref_primary_10_3390_rs15041112 crossref_primary_10_3390_rs15174288 crossref_primary_10_1016_j_compag_2022_106861 crossref_primary_10_14358_PERS_23_00070R2 crossref_primary_10_1007_s11356_021_15782_6 crossref_primary_10_3389_ffgc_2024_1406473 crossref_primary_10_3390_rs17060978 crossref_primary_10_3390_su142113730 crossref_primary_10_1007_s12524_023_01783_0 crossref_primary_10_11922_11_6035_csd_2022_0050_zh crossref_primary_10_3390_app15062903 crossref_primary_10_3390_rs13142792 crossref_primary_10_1016_j_indic_2024_100489 crossref_primary_10_1371_journal_pone_0290829 crossref_primary_10_1016_j_agwat_2025_109416 crossref_primary_10_1080_10106049_2022_2071475 crossref_primary_10_1080_10106049_2024_2392848 crossref_primary_10_1007_s10661_023_12131_7 crossref_primary_10_3390_land14030550 crossref_primary_10_1016_j_envc_2025_101168 crossref_primary_10_1016_j_rsase_2023_101113 crossref_primary_10_3390_land13020151 crossref_primary_10_3390_su17062606 crossref_primary_10_3390_rs13193909 crossref_primary_10_3390_f15111866 crossref_primary_10_1080_10106049_2022_2076923 crossref_primary_10_1016_j_uclim_2022_101116 crossref_primary_10_1007_s10661_024_12719_7 crossref_primary_10_3390_w15193364 crossref_primary_10_3390_su132413758 crossref_primary_10_3390_app142210504 crossref_primary_10_3390_rs17152553 crossref_primary_10_1007_s12145_024_01497_y crossref_primary_10_3390_world5040052 crossref_primary_10_1080_13658816_2025_2557969 crossref_primary_10_3389_fmars_2022_892946 crossref_primary_10_1016_j_cageo_2021_104982 crossref_primary_10_3390_rs15174140 crossref_primary_10_1007_s00704_025_05694_7 crossref_primary_10_3390_rs17050741 crossref_primary_10_3390_rs15133287 crossref_primary_10_3390_f14091864 crossref_primary_10_1080_01431161_2024_2357843 crossref_primary_10_3390_rs14091977 crossref_primary_10_1016_j_envc_2025_101265 crossref_primary_10_1109_TGRS_2025_3589562 crossref_primary_10_3390_rs13071232 crossref_primary_10_1007_s12665_024_12045_8 crossref_primary_10_3390_w14213363 crossref_primary_10_1016_j_scitotenv_2024_173099 crossref_primary_10_1038_s41598_023_36388_7 crossref_primary_10_3390_rs14194896 crossref_primary_10_1016_j_landusepol_2025_107545 crossref_primary_10_4236_jgis_2025_173008 crossref_primary_10_1016_j_rsase_2024_101205 crossref_primary_10_1016_j_rse_2024_114387 crossref_primary_10_1109_ACCESS_2025_3537818 crossref_primary_10_3390_rs15205026 crossref_primary_10_1016_j_rse_2023_113793 crossref_primary_10_1007_s11356_025_36405_4 crossref_primary_10_3390_rs15092466 crossref_primary_10_1016_j_rsase_2021_100616 crossref_primary_10_1016_j_ecoinf_2024_102498 crossref_primary_10_3390_rs15102596 crossref_primary_10_5194_essd_17_1781_2025 crossref_primary_10_1016_j_srs_2025_100237 crossref_primary_10_3390_su151813497 crossref_primary_10_3390_rs14246376 crossref_primary_10_3390_rs13173379 crossref_primary_10_1007_s12524_023_01759_0 crossref_primary_10_1080_17538947_2025_2558920 crossref_primary_10_1007_s12040_023_02099_w crossref_primary_10_3390_rs14143253 crossref_primary_10_1186_s40068_024_00366_3 crossref_primary_10_3390_rs14205130 crossref_primary_10_1016_j_ophoto_2021_100005 crossref_primary_10_1007_s12145_024_01586_y crossref_primary_10_3390_land13030396 crossref_primary_10_3390_rs17050797 crossref_primary_10_3390_rs15112835 crossref_primary_10_1016_j_jag_2022_103092 crossref_primary_10_1109_JSTARS_2024_3519425 crossref_primary_10_1007_s11356_023_25424_8 crossref_primary_10_1007_s43621_025_01365_9 crossref_primary_10_1016_j_ecoinf_2024_102590 crossref_primary_10_1016_j_ecolind_2024_112356 crossref_primary_10_1080_24749508_2024_2359776 crossref_primary_10_1117_1_JRS_18_034512 crossref_primary_10_1109_JSTARS_2021_3133703 crossref_primary_10_1007_s11356_021_17257_0 crossref_primary_10_3390_rs14194978 crossref_primary_10_1109_ACCESS_2024_3389935 crossref_primary_10_3390_agronomy14040755 crossref_primary_10_3390_land13091527 crossref_primary_10_1007_s00704_024_05000_x crossref_primary_10_1080_15481603_2023_2177448 crossref_primary_10_3390_rs15194823 crossref_primary_10_1007_s10661_023_11903_5 crossref_primary_10_1080_22797254_2025_2545341 crossref_primary_10_1007_s11356_024_33094_3 crossref_primary_10_1080_10106049_2022_2086622 crossref_primary_10_3389_fmars_2023_1058460 crossref_primary_10_1080_10095020_2024_2341748 crossref_primary_10_1186_s40068_023_00324_5 crossref_primary_10_1016_j_pce_2024_103745 crossref_primary_10_3390_rs15010106 crossref_primary_10_1080_14498596_2024_2378362 crossref_primary_10_1109_ACCESS_2023_3293828 crossref_primary_10_1007_s40808_024_02185_y crossref_primary_10_3390_urbansci8040183 crossref_primary_10_5814_j_issn_1674_764x_2023_05_009 crossref_primary_10_3390_rs14112628 crossref_primary_10_3390_rs16234406 crossref_primary_10_1109_ACCESS_2024_3519612 crossref_primary_10_1016_j_isprsjprs_2025_04_021 crossref_primary_10_1016_j_rsase_2021_100658 crossref_primary_10_1007_s12145_024_01372_w crossref_primary_10_3390_rs14020284 crossref_primary_10_3390_land12010099 crossref_primary_10_1016_j_rsase_2025_101472 crossref_primary_10_1007_s41651_025_00218_3 crossref_primary_10_1007_s12040_025_02589_z crossref_primary_10_1038_s41597_025_04759_6 crossref_primary_10_1038_s41598_025_88989_z crossref_primary_10_1109_JSTARS_2024_3491804 crossref_primary_10_51489_tuzal_1593068 crossref_primary_10_3390_rs16071124 crossref_primary_10_1109_JSTARS_2025_3602036 crossref_primary_10_1007_s40899_023_00831_4 crossref_primary_10_2478_jlecol_2023_0001 crossref_primary_10_3389_fenvs_2022_924221 crossref_primary_10_1016_j_scs_2025_106721 crossref_primary_10_1038_s41597_023_02584_3 crossref_primary_10_1080_00207233_2021_1997220 crossref_primary_10_1117_1_JRS_17_014506 crossref_primary_10_3390_land14020217 crossref_primary_10_1016_j_ecolind_2023_110374 crossref_primary_10_3390_f15091564 crossref_primary_10_1016_j_heliyon_2024_e26913 crossref_primary_10_1007_s40808_025_02471_3 crossref_primary_10_1088_1755_1315_950_1_012083 crossref_primary_10_3390_app14093940 crossref_primary_10_3390_rs13040586 crossref_primary_10_3390_land12051063 crossref_primary_10_1016_j_engappai_2025_112187 crossref_primary_10_1007_s41748_025_00798_6 crossref_primary_10_1016_j_ufug_2024_128322 crossref_primary_10_3390_rs14215361 crossref_primary_10_3390_land11112039 crossref_primary_10_3390_rs16091537 crossref_primary_10_1038_s41598_024_73085_5 crossref_primary_10_3390_rs15102501 crossref_primary_10_1007_s10489_024_05469_z crossref_primary_10_1016_j_ecoinf_2025_103152 crossref_primary_10_3390_land13122184 crossref_primary_10_3390_rs13081535 crossref_primary_10_3390_rs15143495 crossref_primary_10_1016_j_oregeorev_2024_106068 crossref_primary_10_1016_j_ecoinf_2025_103279 crossref_primary_10_3390_rs15082177 crossref_primary_10_3389_fenvs_2024_1333762 crossref_primary_10_3390_agronomy11061156 crossref_primary_10_1007_s10980_024_01846_8 crossref_primary_10_3390_rs15030655 crossref_primary_10_1371_journal_pone_0294462 crossref_primary_10_1080_10095020_2023_2275622 crossref_primary_10_2166_h2oj_2025_028 crossref_primary_10_3390_rs16224271 |
| Cites_doi | 10.1016/j.isprsjprs.2009.06.004 10.1080/17538947.2012.748848 10.1016/j.rse.2017.06.031 10.1016/j.isprsjprs.2010.11.001 10.3390/rs12071220 10.1007/3-540-29711-1 10.1016/j.patrec.2005.08.011 10.1109/IGARSS.2007.4423498 10.1080/014311699212560 10.3390/rs11101238 10.1109/JSTARS.2020.2971783 10.3390/rs12203424 10.5589/m03-006 10.1016/j.rse.2006.10.010 10.1016/j.apgeog.2006.09.004 10.3390/rs11243023 10.1016/j.rse.2007.11.012 10.1109/IGARSS.2016.7730346 10.2747/1548-1603.49.5.623 10.1007/s11269-010-9639-3 10.3390/rs12010076 10.1080/01431161.2017.1399480 10.1016/j.isprsjprs.2020.07.013 10.1016/0034-4257(91)90048-B 10.1111/j.1466-8238.2011.00712.x 10.1016/j.rse.2009.08.004 10.1109/ICCV.2003.1238308 10.1007/s10661-011-2004-z 10.1016/j.rse.2019.111630 10.1088/1742-6596/1249/1/012008 10.1016/j.rse.2006.06.018 10.23953/cloud.ijarsg.74 10.4324/9780203303566 10.1109/CVPR.2017.520 10.1080/17538947.2020.1772893 10.3390/rs12081279 10.1080/07038992.2018.1437719 10.1080/01431161.2018.1490976 10.1016/j.landurbplan.2017.11.005 10.3390/rs12020319 10.1080/07038992.2019.1711366 10.1109/JSTARS.2012.2228167 10.1080/01431161.2016.1278314 10.3390/rs11010043 10.1109/JPROC.2017.2675998 10.3390/rs10081226 10.3390/rs11040433 10.1088/1755-1315/37/1/012061 10.1109/M2GARSS47143.2020.9105181 10.1016/S0034-4257(01)00295-4 10.14445/22315381/IJETT-V38P202 10.3390/rs9101065 10.1016/j.landurbplan.2015.04.001 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs12223776 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Open Access资源_DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Statistics |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_f9147ea0cebd4eb79fd3b6584647baf1 10_3390_rs12223776 |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-6dffeadac2ffe2a05a566da89c6a3c47b1dc1c4c042de516cc1ea3f88632404d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 267 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594593900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:03:11 EDT 2025 Thu Oct 02 12:01:31 EDT 2025 Mon Oct 20 01:50:57 EDT 2025 Tue Nov 18 22:17:25 EST 2025 Sat Nov 29 07:10:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-6dffeadac2ffe2a05a566da89c6a3c47b1dc1c4c042de516cc1ea3f88632404d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4238-8897 |
| OpenAccessLink | https://www.proquest.com/docview/2462719873?pq-origsite=%requestingapplication% |
| PQID | 2462719873 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f9147ea0cebd4eb79fd3b6584647baf1 proquest_miscellaneous_2511188094 proquest_journals_2462719873 crossref_citationtrail_10_3390_rs12223776 crossref_primary_10_3390_rs12223776 |
| PublicationCentury | 2000 |
| PublicationDate | 20201117 |
| PublicationDateYYYYMMDD | 2020-11-17 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201117 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 ref_58 ref_13 ref_12 Foody (ref_16) 2002; 80 ref_56 ref_11 ref_55 ref_10 ref_54 ref_53 ref_52 ref_51 ref_18 ref_17 ref_15 Mahdianpari (ref_28) 2020; 46 ref_60 (ref_14) 2017; 38 ref_22 ref_21 ref_20 ref_29 ref_27 ref_26 Vizzari (ref_3) 2015; 140 Chen (ref_57) 2002; 68 Ghorbanian (ref_30) 2020; 167 Mountrakis (ref_23) 2011; 66 ref_36 Gislason (ref_19) 2006; 27 ref_35 ref_34 ref_33 ref_32 ref_31 ref_39 ref_38 ref_37 Blaschke (ref_8) 2010; 65 ref_47 Costanzini (ref_62) 2019; 1249 ref_46 ref_45 Wang (ref_24) 2020; 13 ref_44 ref_43 Solano (ref_9) 2019; 83 ref_41 Cheng (ref_25) 2017; 105 ref_40 Ryherd (ref_61) 1996; 62 ref_1 ref_2 ref_49 ref_48 Merkel (ref_59) 2015; 43 ref_5 Foody (ref_42) 2020; 239 ref_4 ref_7 ref_6 |
| References_xml | – volume: 65 start-page: 2 year: 2010 ident: ref_8 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – ident: ref_21 doi: 10.1080/17538947.2012.748848 – ident: ref_1 doi: 10.1016/j.rse.2017.06.031 – volume: 66 start-page: 247 year: 2011 ident: ref_23 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref_37 doi: 10.3390/rs12071220 – ident: ref_32 – ident: ref_40 doi: 10.1007/3-540-29711-1 – ident: ref_26 – ident: ref_51 – volume: 27 start-page: 294 year: 2006 ident: ref_19 article-title: Random forests for land cover classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.011 – ident: ref_60 doi: 10.1109/IGARSS.2007.4423498 – ident: ref_38 doi: 10.1080/014311699212560 – ident: ref_22 doi: 10.3390/rs11101238 – volume: 13 start-page: 769 year: 2020 ident: ref_24 article-title: An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2971783 – ident: ref_58 – ident: ref_11 doi: 10.3390/rs12203424 – ident: ref_13 doi: 10.5589/m03-006 – ident: ref_41 doi: 10.1016/j.rse.2006.10.010 – volume: 68 start-page: 1155 year: 2002 ident: ref_57 article-title: The effect of training strategies on supervised classification at different spatial resolutions publication-title: Photogramm. Eng. Remote Sens. – ident: ref_2 doi: 10.1016/j.apgeog.2006.09.004 – ident: ref_56 doi: 10.3390/rs11243023 – ident: ref_48 doi: 10.1016/j.rse.2007.11.012 – ident: ref_17 doi: 10.1109/IGARSS.2016.7730346 – ident: ref_15 doi: 10.2747/1548-1603.49.5.623 – ident: ref_47 doi: 10.1007/s11269-010-9639-3 – ident: ref_33 doi: 10.3390/rs12010076 – volume: 83 start-page: 101912 year: 2019 ident: ref_9 article-title: A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_35 doi: 10.1080/01431161.2017.1399480 – volume: 167 start-page: 276 year: 2020 ident: ref_30 article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.07.013 – ident: ref_39 doi: 10.1016/0034-4257(91)90048-B – ident: ref_7 doi: 10.1111/j.1466-8238.2011.00712.x – ident: ref_45 – volume: 62 start-page: 181 year: 1996 ident: ref_61 article-title: Combining Spectral and Texture Data in the Segmentation of Remotely Sensed Images publication-title: Photogramm. Eng. Remote Sens. – ident: ref_49 doi: 10.1016/j.rse.2009.08.004 – ident: ref_10 doi: 10.1109/ICCV.2003.1238308 – volume: 43 start-page: 1 year: 2015 ident: ref_59 article-title: Land use and land cover (LULC) mapping and change detection in the Little Zab River Basin (LZRB), Kurdistan Region, NE Iraq and NW Iran publication-title: FOG—Freib. Online Geosci. – ident: ref_46 doi: 10.1007/s10661-011-2004-z – volume: 239 start-page: 111630 year: 2020 ident: ref_42 article-title: Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111630 – volume: 1249 start-page: 12008 year: 2019 ident: ref_62 article-title: Photogrammetry and Remote Sensing for the identification and characterization of trees in urban areas publication-title: J. Phys. Conf. Ser. Inst. Phys. Publ. doi: 10.1088/1742-6596/1249/1/012008 – ident: ref_50 doi: 10.1016/j.rse.2006.06.018 – ident: ref_52 doi: 10.23953/cloud.ijarsg.74 – ident: ref_18 doi: 10.4324/9780203303566 – ident: ref_12 doi: 10.1109/CVPR.2017.520 – ident: ref_29 doi: 10.1080/17538947.2020.1772893 – ident: ref_36 doi: 10.3390/rs12081279 – ident: ref_6 doi: 10.1080/07038992.2018.1437719 – ident: ref_20 doi: 10.1080/01431161.2018.1490976 – ident: ref_4 doi: 10.1016/j.landurbplan.2017.11.005 – ident: ref_53 doi: 10.3390/rs12020319 – volume: 46 start-page: 15 year: 2020 ident: ref_28 article-title: Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2019.1711366 – ident: ref_5 doi: 10.1109/JSTARS.2012.2228167 – volume: 38 start-page: 1312 year: 2017 ident: ref_14 article-title: Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1278314 – ident: ref_27 doi: 10.3390/rs11010043 – volume: 105 start-page: 1865 year: 2017 ident: ref_25 article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – ident: ref_55 doi: 10.3390/rs10081226 – ident: ref_54 doi: 10.3390/rs11040433 – ident: ref_43 doi: 10.1088/1755-1315/37/1/012061 – ident: ref_31 doi: 10.1109/M2GARSS47143.2020.9105181 – volume: 80 start-page: 185 year: 2002 ident: ref_16 article-title: Status of land cover classification accuracy assessment publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00295-4 – ident: ref_44 doi: 10.14445/22315381/IJETT-V38P202 – ident: ref_34 doi: 10.3390/rs9101065 – volume: 140 start-page: 42 year: 2015 ident: ref_3 article-title: Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2015.04.001 |
| SSID | ssj0000331904 |
| Score | 2.6586273 |
| Snippet | Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3776 |
| SubjectTerms | Accuracy Algorithms area Classification Cloud computing Clustering Computer applications crops data collection decision support systems environment Google Earth Engine (GEE) information Internet Italy Iterative methods Lakes Land cover Land use land use and land cover maps land use land cover Landsat Landsat 8 Landsat satellites Learning algorithms Machine learning Mathematical analysis Object oriented programming Parameters PlanetScope principal component analysis Principal components analysis reliability Remote sensing Satellites Segmentation Sentinel 2 SNIC Software Statistical analysis Statistics Support vector machines surfaces testing Tuning |
| SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KCLSXkvRB3ThhS3spRESrXWm1x8QkacFxCq2Lb2KftsGVgh-B_PvMrBTX0EIvPQmkOay-nW9nRhq-IeQTZ8AZmYYkdwUUKEK5RHGjEstFgIBjRB67fH8O5WhUTibq286oL-wJa-WBW-DOgmJCep1ab5zwRqrguIlhU0ijQyx8IOvZKabiGczBtVLR6pFyqOvPliuGoVCiuMhOBIpC_X-cwzG4XB2Ql11WSM_b1RySZ75-RZ53A8pnD6_J3a3BDybJLcoSQ5JIh-PhgMaJltjrE-Gl85peN8104eklvNeMtlqDFChv4hgI-n30dXBKr4eDm1Oqa0dvYielp53I6pSeL6bNcr6e_Vq9IeOryx-DL0k3LAFgVWKdFC4E8AptM7hmOs01JGpOl8oWmlvAijnLrLBAUudzVljLvOahLFGvPRWOvyV7dVP7d4RyLUTqVGpZCRQPouQcqWpzxr2WxvTI5ycAK9spieNAi0UFFQWCXf0Gu0c-bm3vWv2Mv1pd4D5sLVDzOt4AT6g6T6j-5Qk90n_axaoj4qrKRJFJ_LDCe-TD9jFQCP-L6No3G7CBpBNl6ZR4_z_WcUReZFiUY6-g7JO99XLjj8m-vV_PV8uT6KePSQXtiA priority: 102 providerName: Directory of Open Access Journals |
| Title | Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms |
| URI | https://www.proquest.com/docview/2462719873 https://www.proquest.com/docview/2511188094 https://doaj.org/article/f9147ea0cebd4eb79fd3b6584647baf1 |
| Volume | 12 |
| WOSCitedRecordID | wos000594593900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxNBFB80FezFj6oYrWFEL0KX7uzMfsxJ2pDWQpIGa6V6WeZrEyHuxiQVvPi3-97sJBUUL15mYeexzPK-3zx-j5DXnIHO5HEVpTaDBEVIG0muZWS4qMDhaJH6Lt-Pw3w8Lq6u5CQU3FahrXJjE72hto3BGvlhIrIkxwyZv118i3BqFN6uhhEat8kOIpWJDtk5Hown77dVlpiDiMWixSXlkN8fLlcMXWKOICO_eSIP2P-HPfZO5uT-_x7vAbkXwkt61MrDQ3LL1Xvkbph0PvuxR3YxumzBmR-RxbnGMkx0jmDHEHrS4eWwT_2cTOwg8kyjX2p62jTTuaMDELMZbREMKRgS7YdL0IvxWf-Ang77owOqaktHvj_T0QDdOqVH8ykcdT37unpMLk8GH_rvojCCAZglxTrKbFWBrCmTwDNRcaog_LOqkCZT3IhcM2uYEQZU37qUZcYwp3hVFIgCHwvLn5BO3dTuKaFcCRFbGRtWgOGoRME5GgCTMu5UrnWXvNmwozQBnxzHZMxLyFOQdeUN67rk1ZZ20aJy_JXqGLm6pUAkbf-iWU7LoJhlJZnInYqN01Y4ncvKcu3DMvg7VbEu2d8wvAzqvSpvuN0lL7fboJh426Jq11wDDYSyCHYnxbN_f-I52U0wicfewnyfdNbLa_eC3DHfQRqWvSDRPV8s6GFr6gWuPwewTtLPsD85G00-_QIXDwXi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVJ74VFALBQwAg5IjZrEzsMHhMrSx6rZ7Uq0qJyCYzu7SEuy7G5B_VP8Rmby2CKBuPXAKVJiOYr9-ZsZe_INwEvu4ZqJ3NwJTIgBipDGkTyTjuYiR4OTiaDK8v2YRMNhfH4uR2vws_0XhtIqW06siNqUmvbId30R-hFFyPzt7JtDVaPodLUtoVHD4the_sCQbfGm_x7n95XvH-yf9o6cpqoAvl-KpROaPMfhU9rHq6_cQKFHY1Qsdai4FlHmGe1poRHNxgZeqLVnFc_jmITNXWE49nsD1gWCPe7A-qg_GH1a7eq4HCHtiloHlXPp7s4XHpngiERNfrN8VYGAP_i_MmoHt_-34bgDtxr3me3VeL8La7bYgo2mkvvkcgs2yXuuxafvwewko20m54TEnNG1ZslZ0mNVHVDKkKpAyb4U7LAsx1PL9nEZTVit0MiQKLOqeAb7MOz3dthh0hvsMFUYNqjyTy1rpGnHbG86xqFZTr4u7sPZtXz9A-gUZWEfAuNKCNdIV3sxEmMuYs6J4HTgcauiLOvC63b6U93or1MZkGmKcRhBJb2CShderNrOatWRv7Z6RyhatSCl8OpGOR-nDfGkufREZJWrbWaEzSKZG55Vbid-ncq9Lmy3AEsb-lqkV-jqwvPVYyQeOk1ShS0vsA266iTmJ8Wjf3fxDDaOTgdJmvSHx49h06cNC8qjjLahs5xf2CdwU39HZMyfNquJwefrRuwvV8Fgmw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFEEvPAqIQIFFwAGpVmzv-rEHhNK0KVHTNAKKejPr3XWCFOyQpKD-NX4dM36kSCBuPXCyZI9W3vU3j50dfwPwknuoM5GbOYEJcYMipHEkT6WjucjQ4aQiKKt8Pw2j0Sg-O5PjDfjZ_AtDZZWNTSwNtSk05cg7vgj9iHbIvJPVZRHj_f7b-TeHOkjRSWvTTqOCyJG9-IHbt-WbwT5-61e-3z_42Hvn1B0G8F2kWDmhyTJcSqV9vPrKDRRGN0bFUoeKaxGlntGeFhqRbWzghVp7VvEsjonk3BWG47jXYDMOI9dvwea4t9d9v87wuBzh7YqKE5Vz6XYWS4_ccUQEJ795wbJZwB--oHRw_dv_89LcgVt1WM26lR7chQ2bb8PNusP79GIbtiiqrkip78H8JKX0k3NCJM8YcrPh6bDHyv6gVDlVgpV9ydlhUUxmlh2gek1ZxdzI0ICmZVMN9mE06O2yw2HveJep3LDjsi7VspqydsK6swkuzWr6dXkfTq9k9g-glRe5fQiMKyFcI13txWgwMxFzToZPBx63KkrTNrxuoJDomped2oPMEtyfEWySS9i04cVadl6xkfxVao8QtZYgBvHyRrGYJLVBSjLpicgqV9vUCJtGMjM8LcNRnJ3KvDbsNGBLarO2TC6R1obn68dokOiUSeW2OEcZDOGJ5E-KR_8e4hncQJgmw8Ho6DFs-ZTHoPLKaAdaq8W5fQLX9XcExuJprVgMPl81YH8B2JxpCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+LULC+Classification+in+Google+Earth+Engine+Combining+SNIC%2C+GLCM%2C+and+Machine+Learning+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Tassi%2C+Andrea&rft.au=Vizzari%2C+Marco&rft.date=2020-11-17&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=22&rft.spage=3776&rft_id=info:doi/10.3390%2Frs12223776&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12223776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |