A Space–Time Coding Array Sidelobe Optimization Method Combining Array Element Spatial Coding and Mismatched Filtering

Digital array radar (DAR) can fully realize digitalization at both the transmitting and receiving ends. However, the development of freedom at the transmitting end is far from mature. So, the new concept of multi-dimensional waveform coding array has appeared, which can optimize the transmitting res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 16; H. 17; S. 3322
Hauptverfasser: Wang, Shenjing, He, Feng, Dong, Zhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2024
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital array radar (DAR) can fully realize digitalization at both the transmitting and receiving ends. However, the development of freedom at the transmitting end is far from mature. So, the new concept of multi-dimensional waveform coding array has appeared, which can optimize the transmitting resources in space–time/frequency waveform or another dimension. Space–time coding array (STCA) is a typical kind of multi-dimensional waveform coding array, which can make full use of the high degree of freedom at the transmitting end. It realizes emission diversity by introducing a small time delay between different transmission array elements. In this paper, an optimization method for STCA, which combines the array spatial coding at the transmitting end and mismatched filter design at the receiving end, is proposed. This method aims to solve the sidelobe problems of STCA: the inherent resonance phenomenon and the resolution loss problem. The experimental verification and quantitative comparative analysis prove the effectiveness of the proposed method. The resolution is restored to the ideal level under the premise of maintaining the beam-scanning ability and ultra-low sidelobe, and the resonance phenomenon caused by spectrum discontinuity is eliminated simultaneously.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16173322