A Hybrid High-Order Discretization Method for Nonlinear Poroelasticity

In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational methods in applied mathematics Ročník 20; číslo 2; s. 227 - 249
Hlavní autoři: Botti, Michele, Di Pietro, Daniele A., Sochala, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: Minsk De Gruyter 01.04.2020
Walter de Gruyter GmbH
Témata:
ISSN:1609-4840, 1609-9389
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible fluid. The nonlinear elasticity operator is discretized using a Hybrid High-Order method, while the Darcy operator relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, supports arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle both nonzero and vanishing specific storage coefficients.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1609-4840
1609-9389
DOI:10.1515/cmam-2018-0142