SketchMetaFace: A Learning-Based Sketching Interface for High-Fidelity 3D Character Face Modeling
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for e...
Saved in:
| Published in: | IEEE transactions on visualization and computer graphics Vol. 30; no. 8; pp. 5260 - 5275 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this article, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. |
|---|---|
| AbstractList | Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this article, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed “Implicit and Depth Guided Mesh Modeling” (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this article, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency.Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this article, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. |
| Author | Zhu, Heming Luo, Zhongjin Du, Dong Fu, Hongbo Han, Xiaoguang Yu, Yizhou |
| Author_xml | – sequence: 1 givenname: Zhongjin orcidid: 0000-0002-3483-4236 surname: Luo fullname: Luo, Zhongjin email: 220019015@link.cuhk.edu.cn organization: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China – sequence: 2 givenname: Dong orcidid: 0000-0001-5481-389X surname: Du fullname: Du, Dong email: dongdu@mail.ustc.edu.cn organization: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China – sequence: 3 givenname: Heming orcidid: 0000-0003-3525-9349 surname: Zhu fullname: Zhu, Heming email: hezhu@mpi-inf.mpg.de organization: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China – sequence: 4 givenname: Yizhou orcidid: 0000-0002-0470-5548 surname: Yu fullname: Yu, Yizhou email: yizhouy@acm.org organization: Department of Computer Science, University of Hong Kong, Hong Kong – sequence: 5 givenname: Hongbo orcidid: 0000-0002-0284-726X surname: Fu fullname: Fu, Hongbo email: fuplus@gmail.com organization: School of Creative Media, City University of Hong Kong, Hong Kong – sequence: 6 givenname: Xiaoguang orcidid: 0000-0003-0162-3296 surname: Han fullname: Han, Xiaoguang email: hanxiaoguang@cuhk.edu.cn organization: School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37467083$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEUhS1URH_gAZAQssSGzQT_je1hVwJpK6ViQWFreTzXicvEU2xn0bfHo6QS6oKVr3W_78jyOUcncYqA0FtKFpSS7tPdr-XVghHGF5x1VBH-Ap3RTtCGtESe1Jko1TDJ5Ck6z_meECqE7l6hU66EVETzM2R__IbitrdQ7Mo6-Iwv8RpsiiFumi82w4APQL3jm1gg-UphPyV8HTbbZhUGGEN5xPwrXm5tsq4ieE7Ct9O8ipvX6KW3Y4Y3x_MC_Vx9u1teN-vvVzfLy3XjeMdLMwxEDoR0klHwnikvKOmhBy81c0rZthfctRyY8Fpo3jFJOW0HDaIXVfT8An085D6k6c8ecjG7kB2Mo40w7bNhWhAmJBNdRT88Q--nfYr1dYYT1QrWSjVT74_Uvt_BYB5S2Nn0aJ4-rwLqALg05ZzAGxeKLWGKJdkwGkrMXJOZazJzTeZYUzXpM_Mp_H_Ou4MTAOAfnmrdUsr_AuE0mqg |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1016_j_media_2025_103653 crossref_primary_10_3390_electronics13132445 crossref_primary_10_1109_TVCG_2024_3521333 |
| Cites_doi | 10.1145/1141911.1141928 10.1007/978-3-319-46484-8_38 10.1145/3450626.3459760 10.1145/2185520.2185541 10.1111/cgf.12200 10.1109/ICCV48922.2021.01278 10.1109/CVPR.2018.00766 10.1109/CVPR.2019.00025 10.1007/978-3-031-25085-9_11 10.1111/j.1467-8659.2009.01418.x 10.1145/1276377.1276429 10.1109/TVCG.2020.3030330 10.1145/3072959.3073632 10.1145/3072959.3073629 10.1111/cgf.12223 10.1145/1449715.1449740 10.1109/CVPR.2019.00459 10.1109/TCSVT.2020.3040900 10.1109/TVCG.2016.2597830 10.1609/aaai.v36i3.20188 10.1145/37402.37422 10.1016/j.cag.2022.06.005 10.1145/2591011 10.1145/3272127.3275051 10.1145/3414685.3417807 10.1145/2710026 10.1109/CVPR.2018.00414 10.1145/2890493 10.1109/CVPR46437.2021.01010 10.1109/3DV.2017.00018 10.1109/CVPR.2018.00767 10.1111/cgf.14184 10.1111/j.1467-8659.2006.00958.x 10.1007/978-3-030-01252-6_4 10.1145/3203186 10.1109/3DV57658.2022.00015 10.1109/MCG.2011.84 10.1007/978-3-031-20062-5_18 10.1109/CVPR.2017.589 10.1007/978-3-031-26293-7_4 10.1145/1281500.1281554 10.1109/CVPR.2015.7298797 10.1109/CVPR42600.2020.00016 10.1007/s11704-016-5422-9 10.1109/CVPR.2018.00030 10.1145/2185520.2185527 10.1145/1057432.1057457 10.1145/311535.311602 10.1145/3472749.3474791 10.1109/CVPRW.2019.00038 10.1109/CVPR42600.2020.00589 10.1109/3DV50981.2020.00064 10.1145/2897824.2925951 10.1145/1661412.1618495 10.1109/TIP.2021.3118975 10.1109/3DV57658.2022.00050 10.1109/CVPR46437.2021.00595 10.1145/2766990 10.1109/CVPR46437.2021.00337 10.1145/3203197 10.1109/CVPR.2019.00609 10.1145/2601097.2601128 10.1109/TVCG.2013.249 10.1145/3386569.3392386 10.1109/CVPR.2017.179 10.1145/1057432.1057456 10.1145/2366145.2366217 10.1109/TPAMI.2022.3148853 10.1145/882262.882354 10.1109/ICCV.2019.00239 10.1109/CVPR.2017.632 10.1007/978-3-319-46484-8_29 10.1016/0098-3004(96)00021-0 10.1145/1661412.1618494 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2023.3291703 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 5275 |
| ExternalDocumentID | 37467083 10_1109_TVCG_2023_3291703 10188511 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Shenzhen General Project grantid: JCYJ20220530143604010 – fundername: National Natural Science Foundation of China; NSFC grantid: 62172348 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2018YFB1800800 – fundername: Basic Research Project grantid: HZQB-KCZYZ-2021067 – fundername: Shenzhen Outstanding Talents Training Fund grantid: 202002 – fundername: Guangdong Research Projects grantid: 2017ZT07X152; 2019CX01X104 – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: CityU 11212119 – fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence grantid: 2022B1212010001 – fundername: Shenzhen Key Laboratory of Big Data and Artificial Intelligence grantid: ZDSYS201707251409055 – fundername: Hong Kong Research Grants Council under General Research Funds grantid: HKU17206218 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c393t-dd06d009621eff27f410bebef682c77a5b43c53e24f84839261315d8e4b46d0f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262914400075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sun Nov 09 13:05:15 EST 2025 Mon Jun 30 03:05:15 EDT 2025 Mon Jul 21 05:14:52 EDT 2025 Sat Nov 29 03:31:44 EST 2025 Tue Nov 18 22:20:45 EST 2025 Wed Aug 27 02:05:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-dd06d009621eff27f410bebef682c77a5b43c53e24f84839261315d8e4b46d0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0284-726X 0000-0003-3525-9349 0000-0002-0470-5548 0000-0002-3483-4236 0000-0001-5481-389X 0000-0003-0162-3296 |
| OpenAccessLink | https://scholars.cityu.edu.hk/en/publications/isketchmetafacei-a-learning-based-sketching-interface-for-high-fi |
| PMID | 37467083 |
| PQID | 3075425679 |
| PQPubID | 75741 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_10188511 proquest_journals_3075425679 pubmed_primary_37467083 proquest_miscellaneous_2840246249 crossref_citationtrail_10_1109_TVCG_2023_3291703 crossref_primary_10_1109_TVCG_2023_3291703 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 Li (ref52) ref50 Joshi (ref44) ref46 ref45 ref48 ref47 ref42 ref41 ref49 ref8 ref7 ref9 Bangor (ref77) 2009; 4 ref4 ref3 ref6 ref5 ref40 ref35 ref79 ref34 ref78 ref37 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 Bernhardt (ref43) ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 Zhang (ref36) 2020 |
| References_xml | – ident: ref41 doi: 10.1145/1141911.1141928 – ident: ref79 doi: 10.1007/978-3-319-46484-8_38 – ident: ref24 doi: 10.1145/3450626.3459760 – ident: ref49 doi: 10.1145/2185520.2185541 – year: 2020 ident: ref36 article-title: Landmark detection and 3D face reconstruction for caricature using a nonlinear parametric model – ident: ref56 doi: 10.1111/cgf.12200 – ident: ref22 doi: 10.1109/ICCV48922.2021.01278 – ident: ref37 doi: 10.1109/CVPR.2018.00766 – ident: ref67 doi: 10.1109/CVPR.2019.00025 – ident: ref20 doi: 10.1007/978-3-031-25085-9_11 – ident: ref35 doi: 10.1111/j.1467-8659.2009.01418.x – ident: ref2 doi: 10.1145/1276377.1276429 – ident: ref16 doi: 10.1109/TVCG.2020.3030330 – ident: ref6 doi: 10.1145/3072959.3073632 – ident: ref10 doi: 10.1145/3072959.3073629 – ident: ref55 doi: 10.1111/cgf.12223 – ident: ref47 doi: 10.1145/1449715.1449740 – ident: ref66 doi: 10.1109/CVPR.2019.00459 – ident: ref58 doi: 10.1109/TCSVT.2020.3040900 – ident: ref62 doi: 10.1109/TVCG.2016.2597830 – ident: ref26 doi: 10.1609/aaai.v36i3.20188 – ident: ref70 doi: 10.1145/37402.37422 – ident: ref8 doi: 10.1016/j.cag.2022.06.005 – ident: ref4 doi: 10.1145/2591011 – ident: ref14 doi: 10.1145/3272127.3275051 – ident: ref15 doi: 10.1145/3414685.3417807 – ident: ref17 doi: 10.1145/2710026 – ident: ref34 doi: 10.1109/CVPR.2018.00414 – ident: ref29 doi: 10.1145/2890493 – start-page: 47 volume-title: Proc. Eurographics Workshop 3D Object Retrieval ident: ref52 article-title: 3D sketch-based 3D shape retrieval – ident: ref76 doi: 10.1109/CVPR46437.2021.01010 – ident: ref18 doi: 10.1109/3DV.2017.00018 – ident: ref32 doi: 10.1109/CVPR.2018.00767 – ident: ref63 doi: 10.1111/cgf.14184 – ident: ref73 doi: 10.1111/j.1467-8659.2006.00958.x – ident: ref21 doi: 10.1007/978-3-030-01252-6_4 – ident: ref61 doi: 10.1145/3203186 – volume: 4 start-page: 114 issue: 3 year: 2009 ident: ref77 article-title: Determining what individual SUS scores mean: Adding an adjective rating scale publication-title: J. Usability Stud. – ident: ref39 doi: 10.1109/3DV57658.2022.00015 – ident: ref46 doi: 10.1109/MCG.2011.84 – ident: ref59 doi: 10.1007/978-3-031-20062-5_18 – ident: ref33 doi: 10.1109/CVPR.2017.589 – ident: ref60 doi: 10.1007/978-3-031-26293-7_4 – ident: ref42 doi: 10.1145/1281500.1281554 – start-page: 57 volume-title: Proc. Eurographics Workshop Sketch-Based Interfaces Model. Eurograph. Assoc. ident: ref43 article-title: Matisse: Painting 2D regions for modeling free-form shapes – ident: ref57 doi: 10.1109/CVPR.2015.7298797 – ident: ref13 doi: 10.1109/CVPR42600.2020.00016 – ident: ref40 doi: 10.1007/s11704-016-5422-9 – ident: ref78 doi: 10.1109/CVPR.2018.00030 – ident: ref51 doi: 10.1145/2185520.2185527 – ident: ref71 doi: 10.1145/1057432.1057457 – ident: ref1 doi: 10.1145/311535.311602 – ident: ref11 doi: 10.1145/3472749.3474791 – ident: ref31 doi: 10.1109/CVPRW.2019.00038 – ident: ref27 doi: 10.1109/CVPR42600.2020.00589 – ident: ref7 doi: 10.1109/3DV50981.2020.00064 – ident: ref64 doi: 10.1145/2897824.2925951 – ident: ref48 doi: 10.1145/1661412.1618495 – ident: ref53 doi: 10.1109/TIP.2021.3118975 – ident: ref54 doi: 10.1109/3DV57658.2022.00050 – ident: ref38 doi: 10.1109/CVPR46437.2021.00595 – ident: ref5 doi: 10.1145/2766990 – ident: ref28 doi: 10.1109/CVPR46437.2021.00337 – ident: ref19 doi: 10.1145/3203197 – ident: ref68 doi: 10.1109/CVPR.2019.00609 – ident: ref50 doi: 10.1145/2601097.2601128 – start-page: 49 volume-title: Proc. Sustain. Bus. Manage. ident: ref44 article-title: Repoussé: Automatic inflation of 2D artwork – ident: ref30 doi: 10.1109/TVCG.2013.249 – ident: ref25 doi: 10.1145/3386569.3392386 – ident: ref75 doi: 10.1109/CVPR.2017.179 – ident: ref72 doi: 10.1145/1057432.1057456 – ident: ref3 doi: 10.1145/2366145.2366217 – ident: ref9 doi: 10.1109/TPAMI.2022.3148853 – ident: ref65 doi: 10.1145/882262.882354 – ident: ref12 doi: 10.1109/ICCV.2019.00239 – ident: ref23 doi: 10.1109/CVPR.2017.632 – ident: ref69 doi: 10.1007/978-3-319-46484-8_29 – ident: ref74 doi: 10.1016/0098-3004(96)00021-0 – ident: ref45 doi: 10.1145/1661412.1618494 |
| SSID | ssj0014489 |
| Score | 2.4543781 |
| Snippet | Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5260 |
| SubjectTerms | Accuracy Algorithms Artists Avatars Computational modeling Face modeling Faces Image reconstruction Learning Load modeling Modelling neural network Shape sketch-based 3D modeling Solid modeling Three dimensional models Three-dimensional displays |
| Title | SketchMetaFace: A Learning-Based Sketching Interface for High-Fidelity 3D Character Face Modeling |
| URI | https://ieeexplore.ieee.org/document/10188511 https://www.ncbi.nlm.nih.gov/pubmed/37467083 https://www.proquest.com/docview/3075425679 https://www.proquest.com/docview/2840246249 |
| Volume | 30 |
| WOSCitedRecordID | wos001262914400075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZg4gAH3o_CmILECakja9Km5TYGgwMgJAbarWrTBCHQhvbg92M33TQOIHGpWsVpo9qJP8exDXAaKC6lRSNHR1Hhy7CgYGVBPldU9tqq0G3mvNyph4e4308eq2D1MhbGGFMePjNNui19-cVQT2mr7JyySxFCWIZlpSIXrDV3GaCdkbgDhsoPEKZXLswWT857L52bJtUJb4oAzRNOxXME1dngsfihj8oCK79jzVLndDf-OdpNWK_AJWs7adiCJTPYhrWFlIM7kD29E6PuzSTrZtpcsDarUqy--peo0QrmCPCZlbuFFqkYIltGJ0L8LmXFQuDOxBXrzHI9M3oTo6pqFNu-C8_d617n1q_KLPhaJGLiFwWPCjJlgpaxNlBWtniOvLVRHGilsjCXQofCBNLGkvAUIoBWWMRG5hI7WrEHtcFwYA6AqQxXDJPYhGObUXmsQ7yoXHET54LnHvDZz051lYOcSmF8pKUtwpOUWJUSq9KKVR6czbt8ugQcfxHvEh8WCB0LPKjPWJpWc3Sc4uoW4ooVqcSDk3kzzi5ymWQDM5yOU1TeCGIitFE92HeiMH_5TIIOf_noEazi2KQ7LViH2mQ0Ncewor8mb-NRA0W4HzdKEf4GNGPm3A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9tHdLYw9gYYxllM9KeJqW4sRMnvJVupdPaColS8WYljj2hTS3qB38_d3FasYci8RIl8jmxcmff73y-O4BvkeJSOjRyTJKUoYxLClYW5HNFZW-civ1mzmSgRqP05ia7rIPVq1gYa211-My26Lby5Zczs6KtslPKLkUI4SW8iqWMuA_X2jgN0NLI_BFDFUYI1GsnZptnp-NJ96JFlcJbIkIDhVP5HEGVNngq_tNIVYmV7Wiz0jq9vWeO9x28reEl63h5eA8v7HQf3jxKOvgB8qu_xKqhXea93Ngz1mF1ktU_4TnqtJJ5Anxm1X6hQyqG2JbRmZCwR3mxELoz8YN119meGb2JUV01im4_gOvez3G3H9aFFkIjMrEMy5InJRkzUds6Fykn27xA7rokjYxSeVxIYWJhI-lSSYgKMUA7LlMrC4kdnfgIjelsaj8BUzmuGTZzGcc2q4rUxHhRheI2LQQvAuDrn61NnYWcimH805U1wjNNrNLEKl2zKoDvmy53PgXHU8QHxIdHhJ4FATTXLNX1LF1oXN9iXLMSlQVwsmnG-UVOk3xqZ6uFRvWNMCZBKzWAQy8Km5evJejzlo9-hdf98XCgB79Gv49gF8cp_dnBJjSW85U9hh1zv7xdzL9UgvwA7YXpOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SketchMetaFace%3A+A+Learning-Based+Sketching+Interface+for+High-Fidelity+3D+Character+Face+Modeling&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Luo%2C+Zhongjin&rft.au=Du%2C+Dong&rft.au=Zhu%2C+Heming&rft.au=Yu%2C+Yizhou&rft.date=2024-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=30&rft.issue=8&rft.spage=5260&rft_id=info:doi/10.1109%2FTVCG.2023.3291703&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |